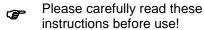


Operating Manual


Resistive Moisture And Temperature Measuring Instrument With Data Logger And Programmable User Curves

ab Version 2.2

GMH 3851

Please consider the safety instructions!

Please keep for future reference!

WEEE-Reg.-Nr. DE 93889386

GHM Messtechnik GmbH - Standort Greisinger

Index

1	(GENERAL NOTE	3
2	5	SAFETY	3
	2.1	1 Intended use	3
	2.2		
	2.3	3 SAFETY INSTRUCTIONS	3
3]	PRODUCT DESCRIPTION	4
	3.1	1 SCOPE OF SUPPLY	4
	3.2		
	3.3	3 START UP AND READINESS FOR OPERATION	4
	3.4		
	3.5		
	3.6		
4]	DEVICE CONFIGURATION	6
5	5	SOME BASICS OF PRECISION MATERIAL MOISTURE MEASURING	7
	5.1	1 MEASURING METHOD	7
	5.2	2 MOISTURE CONTENT U AND WET-BASIS MOISTURE CONTENT W	7
	5.3		
	5.4		
	5.5		
	5.6		
	5.7		
		5.7.1 Presetting5.7.2 Sampling	
		5.7.3 Measuring	
	5.8	O Company of the comp	
		5.8.1 'Hard' Materials (concrete or similar): Measuring with brush-type probes (GBSL91 or GBSK91)	-
		5.8.2 'Soft' Materials (polystyrene or similar): Measuring with Measuring-rods or -pins (GMS 300/91)	
	4	5.8.3 Measuring bulk cargo, bales and other special measures	
	5.9	9 MEASURING OF MATERIALS, HAVING NO CHARACTERISTIC CURVES STORED	10
6]	HINTS FOR SPECIAL FUNCTIONS	11
	6.1	1 MOISTURE EVALUATION ('WET' - 'MEDIUM' - 'DRY')	11
	6.2	·	
	6.3	3 INDIVIDUALLY PROGRAMMABLE CHARACTERISTIC CURVES	11
7	(OPERATION OF LOGGER	12
	7.1	1 "FUNC-STOR": STORING SINGLE MEASUREMENTS	12
	7.2		
8	(OUTPUT	14
	8.1		
	8.2		
o		APPLICATION IN THE GLUED TIMBER CONSTRUCTION AND LAMINATED TIMBER PRODUCTION	
		FAULT AND SYSTEM MESSAGES	
		INSPECTION OF THE ACCURACY / ADJUSTMENT SERVICES	
		RESHIPMENT AND DISPOSAL	
1.	3 5	SPECIFICATION	16
14	4 A	APPENDIX A: SORTS OF WOOD	17
1	5 A	APPENDIX B: ADDITIONAL MATERIALS	22
	15.	.1 MEASURING OF BUILDING MATERIALS	22
	15.		
	15	3 ESTIMATION OF ADDITIONAL MATERIALS	22

1 General note

Read through this document attentively and make yourself familiar to the operation of the device before you use it. Keep this document in a ready-to-hand way in order to be able to look up in the case of doubt.

2 Safety

2.1 Intended use

The device is suitable for the measurement of moisture content and temperature.

The measurement is done using appropriate electrodes and cables. The electrodes are connected via a BNC (moisture) or thermocouple connector (temperature).

It is designed for the mobile use or the stationary operation in a controlled electromagnetic environment (lab). The electrodes are connected via 7-pole bayonet connection.

Personnel which starts up, operates and maintains the device has to have sufficient knowledge of the measuring procedure and the meaning of the resulting measured values, this manual delivers a valuable help for this. The instructions of the manual have to be understood, regarded and followed.

To be sure that there's no risk arising due to misinterpretation of measured values, the operator must have further knowledge in case of doubt - the user is liable for any harm/damage resulting from misinterpretation due to insufficient knowledge.

The manufacturer will assume no liability or warranty in case of usage for other purpose than the intended one, ignoring this manual, operating by unqualified staff as well as unauthorized modifications to the device.

2.2 Safety signs and symbols

Warning notices are marked in this manual as shown below:

Caution! This symbol warns of imminent danger, death, serious injuries and significant damage to property at non-observance.

Attention! This symbol warns of possible dangers or dangerous situations which can provoke damage to the device or environment at non-observance.

Note! This symbol point out processes which can indirectly influence operation, possibly cause incorrect measurement or provoke unforeseen reactions at non-observance.

2.3 Safety instructions

This device has been designed and tested in accordance to the safety regulations for electronic devices. However, its trouble-free operation and reliability cannot be guaranteed unless the standard safety measures and special safety advises given in this manual will be adhered to when using it.

- 1. Trouble-free operation and reliability of the device can only be guaranteed if it is not subjected to any other climatic conditions than those stated under "Specification".
 Transporting the device from a cold to a warm environment condensation may result in a failure of the function. In such a case make sure the device temperature has adjusted to the ambient temperature before trying a new start-up.
- 2. DANGER

Whenever there may be a risk whatsoever involved in running it, the device has to be switched off immediately and to be marked accordingly to avoid re-starting. Operator safety may be a risk if:

- there is visible damage to the device
- the device is not working as specified
- the device has been stored under unsuitable conditions for a longer time In case of doubt, please return device to manufacturer for repair or maintenance.

3.

Do not use this product as safety or emergency stop device or in any other application where failure of the product could result in personal injury or material damage. Failure to comply with these instructions could result in death or serious injury and material damage.

4.

This device must not be used at potentially explosive areas! The usage of this device at potentially explosive areas increases danger of deflagration, explosion or fire due to sparking.

5.

Risk of injury due to sharp measuring needles depending on the used electrode! Please protect needles while not used with suitable means of protection.

3 Product description

3.1 Scope of supply

Handheld instrument 9V battery Operating Manual

3.2 Operating and maintenance

Battery Operation

The battery has been used up and needs to be replaced, if 'bAt' is shown in lower display. The device will, however, continue operating correctly for a certain time.

The battery has been completely used up, if 'bAt' is shown in the upper display.

2.

The battery has to be removed, when storing device above 50°C.

We recommend to remove the battery if device is not used for a longer period of time! Risk of leakage!

- 3. Treat device and probes carefully. Use only in accordance with above specification. (do not throw, hit against etc.). Protect plugs and sockets from soiling.
- 4. Mains Operation

When using a power supply unit please note that operating voltage has to be 10.5 to 12 V DC. Do not apply over voltage!! Simple 12V-power supplies often have excessive no-load voltage. We, therefore, recommend using regulated voltage power supplies. Trouble-free operation is guaranteed by our power supply GNG10/3000.

Prior to connecting the plug power supply with the mains supply make sure that the operating voltage stated at the power supply is identical to the mains voltage.

5. Cable break or no connected / too dry / highly insulating material:

There may still corresponding %-values are displayed

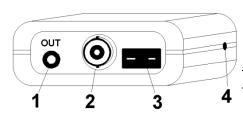
- This shall not constitute a valid test result!

6. Maintenance: The device does not contain serviceable parts inside.

Regular inspection of contacts and cable is suggested, the precision of the measuring chain can be checked with the optional testing adapter GPAD 38

The measuring needles have to be fixed very well e.g. by means of a wrench. Loose needles can disturb the measuring.

3.3 Start up and readiness for operation

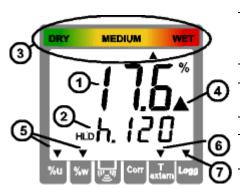

After switching on the instrument, a self test is performed (approximately 5 seconds).

During this time all display segments are shown.

After this sequence the instrument changes to measuring operation and is ready for use.

3.4 Connections

H60.0.13.6C-17


1: Output:

Operation as interface: Connect to optically isolated interface adapter (accessory: GRS 3100 or USB 3100 N)
Operation as analogue output: Connection via suitable cable.
Attention: The output mode has to be configured (p.r.t chapter 8) and influences battery life!

2: Sensor-connection: BNC

- **3: Temperature-probe-connection:** Thermocouple type K (NiCr-Ni) for temperature-compensation with an external temperature-probe
- 4: The mains socket is located at the left side of the instrument.

3.5 Display elements

1: Main display: Currently measured material moisture [percent moisture content]

HLD: Measure value is 'frozen' (key 6)

2: Auxiliary display: Currently selected material (temperature when pressing key 3) Blinking display: Displayed value is out of specified range (wood 8..40 %u)

Special display elements:

- **3: Moisture evaluation:** Evaluation of the material condition: via top arrows: DRY MEDIUM WET
- 4: Warning triangle: Indicates low battery
- 5: "%u" or "%w":Displays unit: moisture content u or wet basis moisture content w
- **6: T external-arrow:** Appears if an external temperature-probe is connected and automatic temperature compensation is activated.
- 7: **Logg-arrow**: Shown if logger function is selected, flashes if cyclic logger is running

All remaining arrows have no function in this version.

3.6 Keypad

1: ON OFF On/Off key

During measurement: shortly displaying temperature or changing to temperature input.

Set/Menu: press (Menu) for 2 s: configuration will activated

2 and 5:

During measurement: select a material

p.r.t.: 6.2 Pre-selection of favourite materials ('Sort')

List of selectable materials:

Appendix A; Appendix B

With manual temperature compensation:

When displaying temperature (call via button ,Temp'): Input of temperature **up/down for configuration**:

to enter values or change settings

6:

During Measurement:

- with Auto-Hold off: Hold current measuring value ('HLD' in display)
- with **Auto-Hold on: Start a new measure**, which is ready when 'HLD' appears in the display. refer to chapter 5.4 Auto-Hold function
- or **calling of the logger functions** (refer to chapter 7)

Set/Menu or temperature input:

confirming of selected input, return to measure

4 Device configuration

Some menu items will be shown depending on the actual device configuration (e.g. there are some items disabled when the logger contains data). Please note the hints by the menu items.

For configuration of the device press "Menu"-key (key 4) for 2 seconds, the main menu will be shown (main display: "SEt"). Choose the desired menu branch by pressing the "Menu"-key (key 4). By pressing " * " (key 3) the referring parameters can be chosen. The referring values are changed by pressing the keys " * " (key 2) or " * " (key 5) (Choice of parameter: " * "). Pressing "Menu" (key 4) again will jump back to the main menu selection and stores the settings. Use key "Store/ " (key 6) to leave configuration..

		Material Or 5			p.r.t.
SEŁ					
		limitation of the	material selection		
	Γ 1	oFF	Unrestricted material selection via key 2 and 5	*	
	Sort.	18:	Material selection in-between 1 up to 8 selectable materials		
Set	5or.1	5or.8	selectable materials (not available if Sort = off). Select the desired material that should be available during the measure via key 2 and 5.	*	
	Set confi	iguration: Generi	-		
		Arrow bottom left	Moisture display = moisture content [%u]	*	
5EŁ _	Uni E'	points to "%u"			
[onF	• •	Arrow bottom left points to "%w"	Moisture display = wet-basis moisture content [%u]		
	11 1	°C	All temperature values are in degrees Celsius		
	Uni F	°F	All temperature values are in degrees Fahrenheit		
		oFF	Atc off: temperature input for compensation via keys	*	5.4
	RŁc	on	Atc on: temperature compensation via internally measured temperature or external probe	*	
-		oFF	Auto HLD off: continuous measuring.	*	5.4
	Ruto MD OFF	on	Auto-HLD on: when reaching a stable measuring result, this will be frozen with-HLD. When pressing the store-key a new measure will be initiated. If logger is switched on (,Func CYCL', ,Func Stor'): device works like setting would be "auto-HLD off"		
-	וח ר	oFF	Average value calculation off		5.6
	3-PE	on	Average value calculation on: Average value out of 3 sequential measuring is calculated and displayed		3.0
	P.oFF	1120 off	Power-off delay in minutes. Device will be automatically switched off as soon as this time has elapsed if no key is pressed/no interface communication takes place Power-off function inactive (continuous operation, e.g. mains operation)		
-		oFF	Function of the output: No output function, lowest power consumption		8
	Out	SEr	Output is serial interface		
	uu_{Γ}	dAC	Output is analogue output 01V		
	Rdr.	01, 11 91	Base Address when Output = Serial Interface : Base address of device for interface communication.		0
	dRC.O	0.0 100.0%	Enter desired moisture value at which the analogue output potential should be 0V		8.2
	dRC. I	0.0 100.0%	Enter desired moisture value at which the analogue output potential should be 1V		8.2
Set Logg			of logger function		
5EŁ		CYCL	Cyclic: logger function ,cyclic logger	*	7
16 6 L 0 6 B	Func	Stor	Store: logger function ,individual value logger		
		oFF	no logger function		
		0:30 60:00	Cycle time of cyclic logger [minutes:seconds]	*	7.2
Set CLOC	Set clock	k: Setting of real	time clock		
SEŁ I	TI DE	HH:MM	Clock: Setting of time hours:minutes		
בנסנ	ÿĒŔr	YYYY	Year		
	1 <u>0</u> 1.E	DD.MM	Date: day.month	1	

(i)

The settings will be set to the settings ex works, if keys 'Set' and 'Store' are pressed simultaneously for more than 2 seconds.

(*) If the logger memory contains data already, the menus/parameters marked can not be called! If these should be altered the logger memory has to be cleared before!

If the manual logger contains data (Logger: 'Func Stor'), the first menu displayed will be: 'rEAd Logg' please refer to chapter 7.1

5 Some basics of precision material moisture measuring

5.1 Measuring method

The electrical resistance depends on the material moisture in many cases. Therefore the device measures the (possibly extremely high) values of resistance and converts them to the displayed value by means of integrated characteristic curves. The temperature has to be compensated especially at the measurement of wood –please refer to chapter 5.5. The contact is realised e.g. by nails that are driven into the material or by injection probes. Frozen material cannot be measured!

5.2 Moisture content u and wet-basis moisture content w

Depending on the Application one of the two units is necessary.

Carpenters, joiners and the like commonly use the moisture content u (sometimes referred to as MC).

When evaluating firewood, wood chips etc., the wet basis moisture content w is needed.

The instrument can be configured to both of the values. Please refer to chapter "configuration".

Moisture content u or MC (relative to dry weight) = dry basis moisture content (mind the arrow at left bottom!)

The unit is %, sometimes used: % MC.

The unit expresses the moisture content like calculated below:

Moisture content u [%] = (weight_{wet} - weight_{dry}) / weight_{dry} *100

Or: Moisture content u [%] = (weight_{water}) / (weight_{drv}) *100

weight_{wet}: weight of the wet material

weight water in the wet material

weight_{dry}: oven-dry weight of material

Example: 1kg of wet wood, which contains 500g of water has a moisture content u of 100%

Wet-Basis Moisture Content w (relative to total weight, mind the arrow at left bottom!)

The wet-basis moisture content expresses the ratio of the mass of water to the total mass of the substance. The ratio is represented by the following equation (the unit is % as well):

wet-basis moisture w[%] = (weight_{wet} - weight_{dry}) / weight_{wet} *100

Or: wet-basis moisture w[%] = (weight_{water}) / weight_{wet} *100

Example: 1kg of wet wood, which contains 500g of water has a moisture content u of 50%

5.3 Special features of the device

466 wood specimens and 28 building materials are stored directly in the memory of the device:

Thus more exact measurements could be reached than with common devices with group selections would ever reach. Even the usage of complex conversion tables for building materials won't be necessary any more!

Example: Common wood-moisture-measuring-devices use one single group for spruce and oak, in reality the deviation of these characteristic curves is more than 3%! (Base for this statement are complex statistical surveys, considered measuring range 7-25%). This random error will not occur for the whole GMH38xx series, with the help of individual characteristic curves highest resolution is achieved.

Extreme wide measuring range: 0-100% (depending on characteristic curve) percent moisture content in wood. **Moisture evaluation:** Additionally to the measuring value, an individual moisture evaluation will be displayed simultaneously.

5.4 Auto-Hold function

Particularly when measuring dry wood, electrostatic charges and other similar noise could dither the measuring value. With activated auto-hold function the device will acquire an exact measuring value automatically. During that, the device could be put down to avoid noise through discharge of the clothing etc. After having acquired the measuring value, the display will change to 'HLD': The value will be frozen as long as a new measuring is initiated by pressing key 6 (store). If the logger is switched on ('Func CYCL' or 'Func Stor'), the auto-hold function can not be used. The device works like it is set to Auto-HLD = off.

5.5 Automatic temperature-compensation ('Atc')

An exact temperature compensation is important for a reliable wood-moisture-measuring. These devices feature a high quality thermocouple-input for type k thermocouples. Thus you could connect common surface-temperature-probes – The needed measuring-time 'afield' will be drastically lowered compared to common (non-surface-) temperature-probes. The used temperature-value therefore is:

Menu	Used temperature-value			
Atc on	Temperature-probe connected	Temperature-measuring through connected probe	arrow 'T extern'	
	No temperature-probe connected	Device-internal temperature-measuring		
Atc off	Independent from temperature-	Manual input of temperature: shortly press Temp-Button		
	probe	then use ▲ (key 2) or ▼ (key 5) to input the		
		temperature confirm selection with 'Store'(key 6)		

When connecting a probe that is not insulated you must have to observe not touching the wood or the electrodes nearby the unshielded electrode. We suggest using our insulated probe GTF38 (already included in standard case sets SET38HF and SET38BF).

Measuring in wood: Measuring with two measuring-needles

Normally wood is measured with measuring-needles. Used electrodes: impact-electrode GSE91 or GSG91, reciprocating piston electrode GHE91. For measuring wood, punch in the measuring-needles across to the wood-grain, having a good contact between the needles and the wood (measuring along wood-grain deviates minimal)

Select **correct wood-sort** (refer to Appendix A).

Reciprocating piston electrode GHE91 with temperature-probe GTF38

Ensure measuring the **correct temperature** (see chapter 5.5).

Hint: The special GTF38 temperature-probe can be stuck into a hole punched in with the electrode before (see picture on left). Now read the measuring-value or when having activated the auto-hold-function initiate a new measuring by pressing **Store**/ (button 6). The measured resistance will be extremely high when measuring dry wood (<15%) thus the measuring will need more time to achieve its final value. Among other things static discharge could momentarily falsify the measuring. Therefore beware of static discharge and wait long enough until a stable measuring value is displayed (unstable: "%" blinking) or use the auto-hold-function (see chapter 5.4 Auto-Hold function).

Most accurate measurements can be carried out within the range of 6 to 30%. Beyond this range the acquirable accuracy will lessen, but the device will deliver reference values still sufficient for the practitioner.

It is measured between the measuring-needles insulated among each other. Requirements for an exact measurement:

- choose right correct place to measure: place should be free of irregularities like resin-clusters, knurls, rifts, etc.
- choose correct depth: Recommendation for trimmed timber: punch in the needles up to 1/3 of the material thickness.
- Perform multiple measurements: the more measurements will be averaged, the more exact the result will be.
- Pay attention to temperature-compensation: the temperature-probe should be measuring the temperature of the moisture-measuring-place when measuring with external temperature-probe (Atc on). Without temperature-probe: let the device adapt to the temperature of the wood (Act on) or enter the exact temperature manually (Act off).

Frequent sources of errors:

- Attention with oven-dried wood: the moisture dispersion may be irregular, often in the core is more moisture than on
- Surface-moisture: The wood-edge could be more humid than the core if the wood had been stored outside and e.g. was in rain
- Wood preservative and other treatment could falsify the measuring.
- Fouling at the connections and round the needles could result in erroneous measurement, especially with dry wood.

Split log firewood measuring

For the firewood measuring there is a Average value calculation function integrated. The function calculates the average value of 3 sequential measuring. Combined with the method described in the following, a reliable measuring of split logs is possible.

5.7.1 Presetting

Auto Hold on: Automatic measurement

3-Pt on: Average function on

Common firewood specimens can be preset via the "Sort"-Menu, e.g.:

Sor.1 h.460 Spruce Sor.2 h.206 Pine Sor.3 h.86 **Beech** Sor.4 h.60 Birch Sor.5 h.401 Group hard wood Sor.6 h.402 Group soft wood Sor.7 h.461 wood chips with GSF 50 or GSF 50 TF

Sor.8 internal reference, e.g. for monitoring of the precision .ref

Please refer to chapter 4 "Device configuration".

The specific sort has to be chosen before measuring getroffen werden

5.7.2 Sampling

Choice of representative logs out of stack:

To be able to rate the stack, several logs from different positions should be measured (depending on position: Top, bottom, weather side...)

Beech Birch Oak Ash

Pine, Spruce Fir

The Logs should be free of anomalies like branches, cracks, pitch pockets.

The logs to be measured should at least have a width 0f 10 cm and a length of 25 cm.

5.7.3 Measuring

Split the log:

Use an suitable axe for splitting. Fast working splitting machines can produce heat which may falsify the measuring.

Preparation of core temperature measuring of log:

Drive in the impact electrode, put temperature probe into the generated hole.

Three measuring values have to be taken at the freshly split surface,

2 measuring spots should have 5 cm distance from cut side, the third should be placed in the center.

Drive in the needles sufficiently deep(> 5mm) and across the fibre direction

Measuring procedure:

Step	Action	Description	Display
Measuring 1	Drive in needles		
Start measuring	Store press 6	Measuring value 1 will be automatically taken	PE. 10
Measuring stable		Instrument is ready for next step	PŁ. I
Measuring 2	Drive in needles		
Start measuring	Store press 6	Measuring value 2 will be automatically taken	PF.20
Measuring stable		Instrument is ready for next step	PŁ.2
Measuring 3	Drive in needles		
Start measuring	Store press 6	Measuring value 3 will be automatically taken	PŁ.30
Measuring stable		Average out of the 3 will be displayed	15.8° e.g. • h.460
Return to continuous measuring display	Store press 6		

5.8 Measuring other materials

5.8.1 'Hard' materials (concrete or similar): Measuring with brush-type probes (GBSL91 or GBSK91)

Measuring with brush probe GBSL91

Drill two holes with Ø6mm (GBSK91) or Ø 8mm (GBSL91) at intervals of 8 to 10cm into the material to be measured. Do not use edgeless drills: the resulting heat will evaporate the moisture which will result in faulty measures. Wait for at least 10min, blow out the holes to clean them from dust. Apply conductivity compound on the brush-type probes and stick them into the holes. Choose correct material (see Appendix B: Additional materials), read the measuring value. Observe that the holes dry out by-and-by, and the device will measure a value too low, if you want to use them several times.

This effect can be compensated by using conductivity compound: insert profuse conductivity compound between the holes and the brush-type probe, and let the electrode stick in the hole for about 30min before measuring (with the device switched off). Temperature-compensation plays no role when using the building material measuring.

5.8.2 'Soft' Materials (polystyrene or similar): Measuring with measuring-rods or -pins (GMS 300/91)

Useable electrodes: impact electrode GSE91 or GSG91, reciprocating piston electrode GHE91. Procedure as described in chapter measuring in wood.

5.8.3 Measuring bulk cargo, bales and other special measures

Usable probes e.g. injection probe GSF 40, GSF 50 (GSF 38) or measuring rods GMS 300/91 mounted on GSE91 or GSG91.

Measuring of splints, wood chips, insulating material and similar - GSF 40 / GSF 50:

When using injection probes or measuring pins oscillating movements have to be avoided when pushing in the probes. Otherwise hollows between the probes and the material may falsify the measuring. The material should be sufficiently compressed. When in doubt repeat the measuring a few times: the highest measuring value is the most exact one. Especially when using the injection probe pay attention having a foulness-free plastic insulator (situated immediately underneath the measuring-needle).

Measuring bale of straw and hay bale – GSF 40 (GSF 38/50): Always inject the electrodes form the plain side of the bale, never from the round side, the probe can be inserted much more slightly, esp. when using GSF 38/50.

5.9 Measuring of materials, having no characteristic curves stored

Choose the representative universal material group "h.A", "h.b", "h.c" and "h.d" (for example corresponding to A,B,C and D of the GHH91) if a conversion table exists.

Attention: The moisture evaluation wet/dry of these material groups is only valid for wood!

Please keep in mind the following when using the temperature-compensation:

Automatic temperature-compensation should always be activated when measuring wood (Act on), with all other materials the automatic temperature-compensation should be switched off (Act off) and a manual temperature of 20°C should be entered.

Additionally at GMH3851: The GMH3851 can store up to 4 additional user characteristic curves. For this the corresponding reference point measurements for the respective material has to be carried out, from which the exact moisture content has to be dedicated with the Darr-Probe or the CM-Method. The Results can be stored in the device with the help of the GMHKonfig-Software, and can be accessed by the device directly.

6 Hints for special functions

6.1 Moisture evaluation ('WET' - 'MEDIUM' - 'DRY')

Additionally to the measuring value, an individual moisture evaluation will be displayed simultaneously. This moisture evaluation is only a guidance value, the final evaluation is depending on the application of the material e.g:

Cement floor pavement ZE, ZFE without additives: Readiness without floor heating at 2,3% with floor heating 1,5% Anhydrit floor pavement AE, AFE: Readiness without floor heating at 0,5% with floor heating 0,3%

Also firewood may be already usable while instrument still displays 'wet'!

Corresponding Standards and Instructions must be observed!

The Device can only complement the skill of a tradesman or investigator but cannot replace it!

6.2 Pre-selection of favourite materials ('Sort')

A pre-selection of different materials (up to 8) can be selected from the menu for an effective working with the device. For example you can set the Menu Sort to 4 and save the desired materials in Sor.1, Sor.2, Sor.3 and Sor.4 if you only measure 4 different materials. Please refer to chapter 4

Only the 4 desired materials can be selected via the buttons up and down, when exiting the menu, a changing during the measurement can be done comfortably. All materials will be available when setting Sort to off. Sor.1 to Sor.4 will still be available in the 'background', when setting the menu Sort to 4 the limited selection of the 4 entered materials will be active again. You only want to measure one material: set the menu Sort to 1 you cannot change to another material, thus a faulty operation is impossible.

6.3 Individually programmable characteristic curves

There are 4 individually programmable characteristic curves integrated.

By using them there can be used other material curves than the already integrated ones.

The programmable curves can be read and programmed by the software GMHKonfig.

As standard they are pre set with the REF-curve. This curve is the base of the determination of user specific curves.

Each curve is defined by a table with two columns (measuring value REF [%] / display value [%]) with 20 rows.

The name of the curve, which is displayed in lower display, can be set individually. Characters which cannot be displayed are displayed as a space character.

Each curve contains also limit values for wet and dry evaluation.

As temperature compensation there is a choice between the standard compensation for wood or linear compensation.

If there should be used no temperature compensation should be used: Choose linear compensation and enter 0 as compensation factor.

Linear temperature compensation:

MC compensated(T) = MC uncompensated * (1+ compensation factor/10000 * (T-20°C)

MC = moisture content

7 Operation of logger

The device supports two different logger functions:

"Func-Stor": each time when "store" (key 6) is pressed a measurement will be recorded.

"Func-CYCL": measurements will automatically be recorded at each interval, which was set in the logger

menu ,CYCL' until the logger will be stopped or the logger memory is full.

The recording is started by pressing "Store" 2 seconds.

The logger records 1 measurement result each time

For the evaluation of the data the software GSOFT3050 (V1.7 or higher) has to be used. The software also allows easy configuration and starting of the logger.

When the logger is activated (Func Stor or Func CYCL) the hold and auto hold functions are no longer available, key 6 is solely used for the operation of the logger functions.

7.1 "Func-Stor": Storing single measurements

Each time when "store" (key 6) is pressed a measurement and its time stamp will be recorded. The recorded data can be viewed either in the display (when calling the configuration an additional menu "REAd LoGG" is displayed, see below) or by means of the interface and a PC with GSOFT3050-software.

The logger stores the current measuring, independent from the stability of the value.

The material curve can be altered like during a normal measuring.

Max. number of measurings: 99

A measuring contains: - current measuring value at the time of recording

- temperature value at the time of recording

- material curve at the time of recording

- time and date of the recording

After each recording "St. XX" will be displayed for a short time. XX represents the number of the recording.

When logger memory contains recordings already:

When "store" is pressed for 2 seconds, the choice for clearing the logger memory will be displayed:

Clear all recordings

Clear the last recording

Clear nothing (cancel menu)

The selection can be made by ♠ (key 2) and ▼ (key 5). "Quit" (key 6) enters the choice.

If the logger memory is full, the display will show:

Viewing recorded measurings

Within the "LoGG Stor" function the measurings can be viewed directly in the display not only by means of a computer (like at "Func CYCL"): press 2 seconds "set" (key 4): The first menu displayed now is "rEAd LoGG" (read logger data). After pressing ▶ (key 3) the measurement recorded last will be displayed, changing between the different data referring to the measurement also is done by pressing ▶. Changing the measurement is done by pressing the keys ♠ or ▼.

7.2 "Func-CYCL": Automatic recording with selectable logger-cycle-time

The Logger-Cycle-Time is selectable (p.r.t. Configuration). For example "CYCL" = 1:00: A measuring is recorded after each 60 seconds.

Special feature of this logger function: The device will change to a '**sleeping state**' during the measurings (lower display shows a count-down to the next measuring). Just before a new measuring should be recorded, the devices wakes up and measures until a stable measuring value is evaluated. This value will be stored, the device enters the sleeping state again. This procedure reduces the battery consumption dramatically, with a fresh zinc carbon battery the device is capable of recording more than a month without an additional mains adapter.

When the cyclic logger contains data (independent if running or stopped), the material cannot be changed.

The value measured during the last recording is shown in the upper display. During the pauses no measuring is done!

An adequate message is stored, if no stable value could been measured during the interval.

Max. number of measurings:

10000

Cycle time: configuration

0:01...60:00 (minutes:seconds, min 1s, max 1h), selectable in the

A measuring contains:

- current measuring value at the time of recording

- temperature at the time of recording

Recording time:

> 1 month (with output activated: OUT = SEr)> 3 months (with output deactivated: OUT = off)

With mains adapter: limited just by memory and cycle time, up to 416 days

Starting a recording:

By pressing "Store" (key 6) for 2 seconds the recording will be initiated. After that the display shows 'St.XXXX' for a short time whenever a measuring is recorded. XXXXX is the number of the measuring 1..9999.

If the logger memory is full, the display will show:

The recording automatically will be stopped.

Stopping the recording manually:

By pressing "Store" (key 6) the recording can be stopped manually. Then the following choice appears:

Stop the recording

Do not stop the recording

The selection can be made by ♠ (key 2) and ▼ (key 5). "Quit" (key 6) enters the choice.

If you try to switch off the instrument in the cyclic recording operation You will be asked once again if the recording should be stopped.

The device can only be switched off after the recording has been stopped! The Auto-Power-Off-function is deactivated during recording!

Clear Recordings:

When "Store" is pressed for 2 seconds, the choice for clearing the logger memory will be displayed:

Clear all recordings

Clear nothing (cancel menu)

The selection can be made by ♠ (key 2) and ▼ (key 5). "Quit" (key 6) enters the choice.

8 Output

The output can be used as serial interface or as analogue output (0-1V). If none of both is needed, we suggest to switch the output off, battery life then is extended.

8.1 Interface - Base address ('Adr.')

By using an electrically isolated interface converter USB 3100 N, GRS 3100 or GRS 3105 (accessory) the device can be connected to a PC.

With the GRS 3105 it is possible to connect up to 5 instruments of the GMH 3000 family to a single interface (please also refer to GRS 3105-manual). As a precondition the base addresses of all devices must not be identical, make sure to configure the base addresses accordingly (refer menu point "Adr." in chapter 4). In order to avoid transmission errors, there are several security checks implemented (e.g. CRC).

The following standard software packages are available:

GSOFT 3050: Operation and read out of logger function for devices with integrated data logger

GMHKonfig: Software for a comfortable editing of the device (e.g. Material selection...)

■ EBS 20M / 60M: 20-/60-channel software to display the measuring values

In case you want to develop your own software we offer a GMH3000-development package including:

- A universally applicable Windows functions library ('GMH3000.DLL') with documentation that can be used by the most programming languages. Suitable for Windows XP™, Windows Vista™, Windows 7™, Windows 8 / 8.1™, Windows 10™
- Programming examples Visual Studio 2010 (C#, C++ und VB), Testpoint™,LabView™ and others.

The device has 2 channels:

- Channel 1: Material-moisture in % and base-address
- Channel 2: Temperature

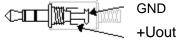
Supported interface-functions:

1	2	Code	Name/Function	1	2	Code	Name/Function
Х	Χ	0	read nominal value	х	х	202	read unit of display
Х	Х	3	read system status	Х	х	204	read decimal point of display
Х		12	read ID-no.	х		205	read extended measuring type in display
Х	Χ	176	read min measuring range	х		208	read channel count
Х	Х	177	read max measuring range	Х	х	214	read scale correction
Х	Χ	178	read measuring range unit	Х	Х	215	set scale correction
Х	Х	179	read measuring range decimal point	Х	Х	216	read zero displacement
х	Х	180	read measuring type	х	х	217	set zero displacement
	Х	194	set display unit	Х		222	read turn-off-delay
Х	Х	199	read measuring type in display	х		223	Set turn-off-delay
Х	Χ	200	read min. display range	Х		240	Reset
Х	Χ	201	read max. display range	Х		254	read program identification

The measuring and range values read via interface are always in the selected display unit (°C/°F)!

8.2 Analogue output – scaling with DAC.0 and DAC.1

With the DAC.0 and DAC.1 values the output can be rapidly scaled to Your efforts.


Keep in mind not to connect low-resistive loads to the output, otherwise the output value will be wrong and battery life is decreased. Loads above ca 10kOhm are uncritical.

If the display exceeds the value set by DAC.1, then the device will apply 1V to the output

If the display falls below the value set by DAC.0, then the device will apply 0V to the output

In case of an error (Err.1, Err.2, no sensor, etc.) the device will apply slightly above 1V to the output.

Plug wiring:

The 3rd contact has to be left floating!
Only stereo plugs are allowed!

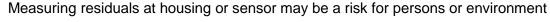
9 Application in the glued timber construction and laminated timber production

The instrument with its curve h.460 (Fir) was certified by the MPA Stuttgart (Otto Graf institute) for applications in the glued timber construction according to following regulations:

EN 14080 : 2013 EN 16351 : 2015

Used equipment: Cable GMK38 and reciprocating piston electrode GHE91 (recommended) or impact electrode GSE91. Therefore it is especially suitable for glued timber construction and laminated timber production.

10 Fault an	d system messages	
Display	Meaning	Remedy
676°	Blinking curve display: Displayed value is out of specified range (Wood: 840%u)	Limited measuring precision! The display value is only usable as indication, not as measurement!
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	low battery voltage, device will continue to work for a short time	replace battery
<u>-b/ĄE<´`</u>	If mains operation: wrong voltage	replace power supply, if fault continues to exist: device damaged
	low battery voltage	replace battery
BRE	If mains operation: wrong voltage	Check/replace power supply, if fault continues to exist: device damaged
No display	low battery voltage	replace battery
or weird display	If mains operation: wrong voltage	Check/replace power supply, if fault continues to exist: device damaged
Device does not	system error	Disconnect battery or power supply, wait some time, re-connect
react on keys	device defective	return to manufacturer for repair
	Sensor error: no material connected (meas. Value below permissible range), no valid signal	Connect meas. material
	charge at the probe, device will discharge (esp. at dry wood)	Wait until probe has discharged
	Sensor broken or device defective	return to manufacturer for repair
Err.1	Value exceeding measuring range	Check: Is the value exceeding the measuring range specified? ->temperature too high!
	Wrong probe connected	Check probe
	Probe or device defective	return to manufacturer for repair
	Non-floating probe near the unshielded electrode	Insulate probe or measure at shielded electrode
Err.2	Value below display range	Check: Is the value below the measuring range specified? -> temperature too low!
	Wrong probe connected	Check probe
	Probe, cable or device defective	return to manufacturer for repair
Err.7	system error	return to manufacturer for repair


11 Inspection of the accuracy / Adjustment Services

Accuracy can be inspected with the optional available testing adapter GPAD 38 (e.g. every year). To check precision select material characteristic curve ".rEF", choose display "%u" and connect the testing adapter. The device must display the printed value for the GMH38xx. If the precision is bad, we suggest to send the device to the manufacturer for a new adjustment.

12 Reshipment and disposal

All devices returned to the manufacturer have to be free of any residual of measuring media and other hazardous substances.

Use an adequate transport package for reshipment, especially for fully functional devices. Please make sure that the device is protected in the package by enough packing materials.

Add the completed reshipment form of the GHM website http://www.ghm-messtechnik.de/downloads/ghm-formulare.html.

Dispense exhausted batteries at destined gathering places.

The device must not be disposed in the unsorted municipal waste! Send the device directly to us (sufficiently stamped), considering the above if it should be disposed. We will dispose the device appropriate and environmentally sound.

13 Specification **Channel 1** Measuring Channel 2 **Principle** Resistive material-moisture-measuring Temperature-measuring thermocouple type K matching DIN EN 13183-2: 2002 or internal temperature-measuring or according VDI 4206 sheet 4 Char. curve 466 different kinds of wood matching DIN EN 60584-1: 1996, ITS90 28 different building materials 4 individually programmable material curves Probe connection **BNC Plug** floating connector for mini-blade-terminal Meas. range 0,0...100,0 % u moisture content thermocouple: -40,0... +200,0 °C / -40,0... +392,0 °F (depending on characteristic curve) int. temp.-Meas: -30,0...+75,0 °C / -22,0...+167,0 °F equal to approx. 3kOhm ... 2TerraOhm Spec. meas. range Wood: 8 ... 40 % u Wood temperature 0 ... 40 °C (no frozen wood!) Resolution 0.1 °C / 0.1 °F 0.1 % moisture content **Evaluation** Evaluation of the material condition in 9 steps from DRY to WET **Accuracy Device** ±1Digit (at nominal-temperature) without probe Wood: ±0,2 % moisture content Type K: ± 0.5% m.v. ± 0.3 °C (deviation from characteristic curve, int. t.-measuring: ± 0,3 °C (is type K reference range 8..40 % u) junction) building mat.: ±0,2 % moisture content (dev. from char. curve, range depending on char. curve) overall accuracy depending on used measuring equipment, measured material and the correct execution. Temperature drift < 0,005 % moisture content per 1 K 0,01 % per 1 K Nominal temperature 25°C **Ambient condition** Temperature -25 ... +50 °C / -13 ... +122 °F (frozen material cannot be measured) Relative humidity 0 ... 95 %RH (non condensing) Storage temperature -25 ... +70 °C / -13 ... +158 °F **Output:** 3.5 mm audio plug, stereo (max. permissible length of connection cable < 3 m) output selectable as: serial interface: via optically isolated interface adapter GRS 3100, GRS 3105 or USB 3100 N (p.r.t. accessories) directly connectable to RS232- or USB-interfaces. analog output: 0..1 V, freely scalable (resolution 13 bit, accuracy 0.05 % at nom. temp., cap. load <1 nF) 2 Functions: individual value logger ("Func-Stor") and cyclic logger ("Func-CYCL") Logger: Memory: Stor: 99 data sets; CYCL: 10000 data sets Cycle time CYCL: 0:30...60:00 (minutes:seconds, min 1 s, max 1 h)

Real time clock: Integrated clock with date and year

Power Supply 9V-Battery (included) as well as additional d.c. connector (diameter of internal pin 1.9 mm) for

external 10.5-12 V direct voltage supply. (suitable power supply: GNG10/3000)

Power Consumption output off approx. 2.5 mA

output serial interface: approx. 2.7 mA analog output: approx. 3.0 mA

cyclic logger sleeping state with output deactivated: < 0.1 mA cyclic logger sleeping state with activated serial interface: < 0.3 mA

Display Two 4 digits LCD's (12.4 mm high and 7 mm high) for material moisture temperature or

characteristic curve, hold function, etc. as well as additional pointing arrows.

Pushbuttons 6 membrane keys for on/off switch, menu operation, characteristic curve, hold-function etc.

Housing Dimension: 142 x 71 x 26 mm (L x B x D)

impact resistant ABS, membrane keyboard, transparent panel, integrated pop-up-clip for table

top or suspended use

Weight approx. 155 g

Hold Function Press button to store current value.

Automatic-Off-Function Device will be automatically switched off if no key is pressed/no interface communication

takes place for the time of the power-off delay. The power-off delay can be set to values

between 1 and 120 min.; it can be completely deactivated.

Directives / standards: The instruments confirm to following European Directives:

2014/30/EU EMC Directive

2011/65/EU RoHS Applied harmonized standards:

EN 61326-1: 2013 emissions level: class B

emi immunity according to table 3 and A.1

Additional fault: <1 %

The instrument with suitable Electrode (GHH91) is conform to the requirements of

EN 14080 : 2013 EN 16351 : 2015

for fir. Therefore it is suitable e.g. for glued timber construction and laminated timber

(MPA certified and listed)

14 Appendix A: Sorts of wood

Select kind of wood you want to measure, enter number on the device, e.g. birch = h. 60

Range 0100% 1100% 2100% 3100%
1100% 2100%
2100%
3100%
4100%
6100%
6100%
6100%
5100%
3 100 /0

Abura	Hallea ciliata	h.2	760%
Afrormosia	Pericopsis elata	h.3	655%
Afzelia	Afzelia spp.	h.4	847%
Agba	Gossweilerodendron balsamiferum		682%
Albizia / latandza, New Guinea	Albizia falcatara	h.8	5100%
Albizia / latandza, Solomon Island	Albizia falcatara	h.9	493%
Alder, Blush	Solanea australis	h.10	582%
Alder, Brown	Caldcluvia paniculosa	h.11	789%
Alder, Common	Alnus glutinosa	h.131	2100%
Alder, Rose	Caldcluvia australiensis	h.12	691%
Alerce	Fitzroya cupressoides	h.13	777%
Amberoi	Pterocymbium beccarii	h.14	585%
Amoora, New Guinea	Amoora cucullata	h.15	3100%
Andiroba	Carapa guianensis	h.16	573%
Antiaris, New Guinea	Antiaris toxicaria	h.7	6100%
Apple, Black	Planachonella australis	h.17	778%
Ash Silvertop	Eucalyptus sieberi	h.27	2100%
Ash, American	Fraxinus americana		5100%
Ash, Bennet's	Flindersia bennettiana	h.18	699%
Ash, Crow's	Flindersia australis	h.19	788%
Ash, European	Fraxinus excelsior	h.133	769%
Ash, Hickory	Flindersia ifflaiana	h.20	692%
Ash, Japanese	Fraxinus mandshurica	h.134	4100%
Ash, Red	Flindersia excelsa	h.21	586%
Ash, Scaly	Ganophyllum falcatum	h.22	5100%
Ash, Silver (Northern)	Flindersia schottina	h.23	789%
Ash, Silver (Queensland)	Flindersia bourjotiana	h.24	6100%
Ash, Silver (Southern)	Flindersia schottina	h.25	7100%

Ash, Silver, New Guinea	Flindersia amboinensis	h.26	5100%
Aspen, Hard	Acronychia laevis	h.28	584%
Ayan	Distemonanthus benthamianus	h.285	767%
Balau	Shorea laevis	h.31	465%
Balau, red	Shorea guiso	h.32	488%
Balsa	Ochroma pyramidale	h.33	4100%
Basralocus / Angelique	Dicorynia guianensis	h.34	667%
Basswood	Tilia americana	h.228	4100%
Basswood, Fijian	Endospermum macrophyllum	h.35	479%
Basswood, Malaysian	Endospermum malacense	h.36	5100%
Basswood, New Guinea	Endospermum medullosum	h.37	598%
Basswood, Silver	Polyscias elegans	h.38	793%
Basswood, Solomon Island	Polyscias elegans	h.39	483%
Bean, Black	Castanosperum australe	h.40	6100%
beech, damped	Fagus sylvatica	h.87	668%
beech, european -	Fagus sylvatica	h.86	5100%
Beech, Myrtle	Nothofagus cunninghamii	h.41	698%
Beech, New Zeeland Red (hearted untreated)	Nothofagus fusca	h.42	7100%
Beech, New Zeeland Red (sapwood boron)	Nothofagus fusca	h.43	2100%
Beech, New Zeeland Red (sapwood untreated)	Nothofagus fusca	h.44	5100%
Beech, Silky	Citronella moorei	h.45	885%
Beech, Silver	Nothofagus menziesii	h.46	873%
Beech, Silver (sapwood tanalith)	Nothofagus menziesii	h.47	699%
Beech, Silver (sapwood untreated)	Nothofagus menziesii	h.48	4100%

Beech, Wau	Elmerrilla papuana	h.49	7100%
Beech, White (Fiji)	Gmelina vitiensis	h.50	5100%
Beech, White (Queensland)	Gmelina leichardtii	h.51	6100%
Bintangor / Calophyllum, Fijian	Callophyllum leucocarpum	h.53	5100%
Bintangor / Calophyllum, Malaysian	Calophyllum curtisii	h.54	699%
Bintangor / Calophyllum, New Guinea	Calophyllum papuanum	h.55	4100%
Bintangor / Calophyllum, Phillipines	Calophyllum inophyllum	h.56	6100%
Bintangor / Calophyllum, Solomon Islands	Calophyllum kajewskii	h.57	6100%
Binuang	Octomeles sumatrana	h.130	595%
Birch, American	Betula lutea	h.59	794%
Birch, European	Betula pubescens	h.60	5100%
Birch, White	Schizomeria ovata	h.58	797%
Bishop Wood (Fiji)	Bischofia javanica	h.61	594%
Blackbutt	Eucalyptus pilularis	h.62	4100%
Blackbutt, Western Australia	Eucalyptus patens	h.63	6100%
Blackwood	Acacia melanoxylon	h.64	697%
Bloodwood, Red	Corymbia gunmifera	h.66	7100%
Bollywood	Litsea reticulata	h.67	5100%
Bossime	Drypetes spp,	h.70	778%
Box Grey	Eucalyptus moluccana	h.75	894%
Box Grey Coast	Eucalyptus bosistoana	h.76	798%
Box, Black	Eucalyptus lafgiflorens	h.71	5100%
Box, Brush (Location Unknown)	Lophostemon confertus	h.74	563%
Box, Brush (N.S.W.)	Lophostemon confertus	h.72	468%
Box, Brush (Queensland	Lophostemon confertus	h.73	752%
Box, Kanuka	Tristania laurina	h.77	6100%
Boxwood, New Guinea	Xanthophyllum papuanum	h.78	588%
Boxwood, Yellow	Planchonella pholmaniana	h.79	778%
Brachychiton	Brachychiton carrthersii	h.80	567%
Bridelia	Bridelia minutiflora	h.81	5100%
Brigalow	Acacia harpohylla Eucalyptus fastigata	h.82	5100%
Brownbarrel Bubinga	Guibourtia demeusii	h.83 h.84	5100% 790%
	Buchanania		
Buchanania	arborescens	h.85	499%
Burckella, Solomon Island	Burckella obovata	h.88	473%
Butternut, Rose	Blepharocarya involucrigera	h.89	588%
Camphorwood, New Guinea	Cinnamomum spp,	h.90	696%
Campnosperma (Malaysia)	Campnosperma curtisii	h.91	8100%
Campnosperma (Solomon Island)	Campnosperma kajewskii	h.92	3100%
Cananga (Phillipines)	Canagium odoratum	h.93	778%
Canarium Solomon Island	Canarium salomonese	h.97	482%
Canarium, African	Canarium Scheinfurthii	h.94	7100%
Canarium, Fijian	Canarium oleosum	h.95	5100%
Canarium, New Guinea	Canarium vitiense	h.96	597%
Candlenut	Aleurites moluccana	h.98	0100%
Carabeen, Yellow	Sloanea woollsii	h.99	685%
Cadar, Amaraga	Cathormion umbellatum	h.100	468%
Cedar , Amercan	Cedrela odorata	h.102	886%
Cedar, incense	Calocedrus decurrens	h.65	5100%
Cedar, White	Melia azedarach	h.101	7100%
Cedar, Yellow	Chamaecyparsis nootkatensis	h.457	4100%

Celtis, New Guinea	Celtis spp,	h 103	586%
Celtis, Solomon Island	Celtis philippinesis		469%
Cheesewood, White			
(Queensland) /Asian	Alstonia scholaris	h.105	5100%
Alstonia			
Chengal (Malaysia)	Neobalanocarpus heimii	h.106	499%
Cherry, American	Prunus serotina	h.216	5100%
Cherry, European	Prunus avium	h.217	786%
Cleistocalyx	Cleistocalyx mirtoides	h.107	5100%
Coachwood	Ceratopetalum	h.108	4100%
Coondoo, Blush	apetalum Planchonella laurifolia	h.109	675%
Cordia, New Guinea	Cordia dichotoma	h.110	561%
Corkwood, Grey	Erythrina vespertillio	h.111	670%
Courbaril	Hymenaea coubaril	h.112	764%
Cudgerie, Brown	Canarium	h.113	785%
Cupiuba	australasicum Goupia glabra	h.147	669%
Curupixá	Micropholis		663%
	Cupressus spp,		5100%
Cypress, Northern	Callitris intratropica	h.115	6100%
	Callitris Intratropica Callitris preisii		7100%
Cypress, Rottnest Island	· '		
Cypress, White	Callitris glaucophylla Decussocarpus	h.117	6100%
Dakua, Salusalu (Fiji)	vitiensis	h.118	6100%
Dibetou/African walnut	Lovoa trichilioides	h.119	787%
Dillenia (Solomon Island)	Dillenia salomonese	h.120	482%
Doi (Fiji)	Alphitonia zizphoides	h.121	592%
Duabanga, New Guinea	Duabanga moluccana	h.124	493%
Ebony, african	Diospyros spp,	h.125	668%
Ekki	Lophira alata	h.29	495%
Elm, European	Ulmus spp,	h.374	761%
Elm, White	Ulmus americana		588%
Evodia, White	Melicope micrococca		575%
Figwood (Moreton Bay)	Ficus macrophylla	h.139	769%
fir, alpine	Abies lasiocarpa	h.410	6100%
fir, amabilis	Abies amabilis	h.411	4100%
Fir, Douglas	Pseudotsuga menziesii	h.122	5100%
Fir, Douglas (New Zealand)	Pseudotsuga	h.140	695%
(sapwood treated) Fir, Douglas (New Zealand)	menziesii Pseudotsuga		
(sapwood untreated)	menziesii	h.141	5100%
Fir, Douglas (New Zealand)	Pseudotsuga	h.142	3100%
(truewood untreated)	menziesii		
Fir, europ., MPA	Picea abies Karst.	h.460	6100%
fir, grand	Abies grandis		4100%
Fir, Spruce	Abies magnifica		5100%
fir, white / fir, silver	Abies alba		5100%
Galip	Canarium indicum Matrixiodendron	h.143	581%
Garo-Garo	pschyclados	h.144	586%
Garuga	Garuga floribunda	h.145	665%
Goncalo Alvez	Astronium spp,	h.146	651%
Greenheart	Ocotea rodiaei	h.148	6100%
Greenheart, Queensland	Endiandra compressa	h.149	7100%
Group Spruce-Pine-Fir	Weichhölzergruppe / Softwood-Group	h.402	6100%
Guarea, black	Guarea cedrata	h.68	7100%
Guarea, white	Guarea cedrata	h.69	985%
Guariuba	Clarisia racemosa		870%
Gum, Black	Nyssa sylvatica	h.162	7100%
Gum, Blue, Sidney	Eucalyptus saligna	h.152	7100%
Gum, Blue, Southern	Eucalyptus globulus	h.151	6100%
Gum, Grey	Eucalyptus punctata	h.153	5100%
,,	_ soc., plao pariolala		310070

Gum, Grey, Mountain	Eucalyptus cypellocarpa	h.154	6100%
Gum, Maiden's	Eucalyptus maidenii	h.155	7100%
Gum, Manna	Eucalyptus viminalis		4100%
Gum, Mountain	Eucalyptus dalrympleana	h.157	3100%
Gum, Pink	Eucalyptus fasciculosa	h.158	6100%
Gum, Red, American	Liquidambar styraciflua	h.166	5100%
Gum, Red, Forest	Eucalyptus tereticomis	h.159	7100%
Gum, Red, River	Eucalyptus camaldulensis		7100%
Gum, Rose / Gum, Saligna	Eucalyptus grandis	h.161	7100%
Gum, Shining	Eucalyptus nitens		5100%
Gum, Spotted (Victoria) (Lemon-Scented)	Corymbia spp,	h.164	494%
Gum, Sugar	Eucalyptus cladocalyx	h.165	6100%
Gum, White Dunn's	Eucalyptus dunnii	h.167	493%
Gum, Yellow	Eucalyptus leucoxylon	h.168	794%
Handlewood, Grey	Aphanante phillipinensis	h.169	584%
Handlewood, White	Strebulus pendulinus	h.170	772%
Hardwood, Johnstone River	Bakhousia bancroftii	h.171	578%
Hemlock / Hemlock, Western	Tsuga heterophylla	h.172	867%
Hemlock, Chinesische	Tsuga chinensis	h.173	598%
Hevea	Hevea Brasiliensis	h.174	792%
Hickory	Carya spp.	h.175	689%
Hollywood, Yellow	Premna lignum-vitae	h.176	786%
Horizontal	Anodopetalum biglandulosum	h.177	7100%
Incensewood	Pseudocarapa nitidula	h.178	873%
Iroko	Chlorophora excesla		754%
Ironbark, Grey	Eucalyptus drephanophylla	_	7100%
Ironbark, Grey		h.181	5100%
Ironbark, Red	Eucalyptus sideroxylon		8100%
Ironbark, Red, Broad Leaved	Eucalyptus fibrosa	h.183	8100%
Ironbark, Red, Narrow Leaved	Eucalyptus cerbra		5100%
Jarrah	Eucalyptus marginata	h.185	5100%
Jelutong	Dyera costulata		0100%
Jequitiba	Cariniana spp,	h.187	581%
Kahikatea (New Zealand) (Boron)	Dacrycarpus docrydiodies	h.188	780%
Kahikatea (New Zealand)	Dacrycarpus	h 400	6 040/
(Thanalith)` Kahikatea (New Zealand)	docrydiodies Dacrycarpus		694%
(untreated)	docrydiodies		696%
Kamarere (Fiji)	Eucalyptus deglupta	h.191	583%
Kamarere (New Guinea)	Eucalyptus deglupta	h.192	5100%
Kapur	Dryobalanops spp, Eucalyptus		794%
Karri Kauceti	diversicolor Kermadecia vitiensis		5100% 471%
Kauri	Agathis australis,	h.201	5100%
Keledang	boroneensis Artocarpus lanceifolius	-	0100%
Kempas	Koomapassia excelsa	h.203	4100%
Keranji (Malaysia)	Dialium platysepalum	h.204	560%
Keruing	Dipterocarpus spp,	h.205	681%
Kiso	Chisocheton schumannii	h.218	665%
Lacewood, Yellow	Polyalthia oblongifolia	h.219	587%
Laran	Anthocephalus chinensis	h.223	785%
Larch	Larix decidua	h.221	588%
Larch, American / Larch, Western	Larix occidentalis	h.220	5100%
	·		

		ige 13	
Larch, Japanese	Larix kaempferi		5100%
Lauan, Red	Shorea negrosensis	h.224	578%
Leatherwood	Eucryphia lucida	h.225	6100%
Lightwood	Acacia implexa	h.226	778%
Limba	Terminalia superba	h.227	670%
Lime, European	Tilia vulgaris	h.229	4100%
Louro, Red	Ocotea rubra	h.231	599%
Macadamia	Floyda praealta	h.232	774%
Magnolia	Magnolia acuminata/grandiflora	h.233	6100%
Mahogany, Brush	Geissos benthamii		770%
Mahogany, Miva	Dysoxylum muelleri		894%
Mahagany, New Guinea	Dysoxylum spp,	h.241	695%
Mahogany, Red	Eucalyptus botryoides Dysoxylum		7100%
Mahogany, Rose	fraseranum	_	783%
Mahogany, Southern	Eucalyptus botryoides Eucalyptus	h.246	5100%
Mahogany, White	acmenoides	h.247	6100%
Mahogony Khaya	Khaya spp,	h.235	7100%
Mahogony, American	Swietenia spp,	h.234	6100%
Mahogony, Phillipines	Parashorea plicata	h.236	5100%
Mahogony, Phillipines	Shorea almon	h.237	486%
Mahogony, Sapelli / Sapele	Entandrophragma cylindricum	h.238	5100%
Mahogony, Sipo / Utile	Entandrophragma utilie	h.239	6100%
Mahogony, Tiama / gedu	Entandrophragma	h.240	1066%
nohor Mako	angolense Trischospermum richii	h.248	387%
	Thieghemmella		
Makoré	africana	h.123	6100%
Makorè		h.249	7100%
Malas	Homalium foetidum		592%
Malletwood	Rhodamnia argentea	h.251	587%
Malletwood, Brown	Rhodamnia rubescens		
Manggachapui	Hopea acuminata	h.253	
Mango	Mangifera minor		487%
Mango, Phillipines	Mangifera altissima		7100%
Mangosteen (Fiji)	Garcinia myrtifolia Xylocarpus	h.256	587%
Mangrove, Cedar	australasicus	h.257	6100%
Maniltoa (Fiji)	Maniltoa grandiflora	h.258	
Maniltoa (New Guinea)	Maniltoa pimenteliana	h.259	672%
Mansonia	Mansonia altissima	h.260	7100%
Maple, New Guinea	Flindersia pimentelianan	h.261	6100%
Maple, Queensland	Flindersia brayleyana	h.262	5100%
Maple, Rose	Cryptocarya	h.263	680%
Maple, Scented	erythroxylon Flindersia laevicarpa	h.264	770%
Mararie	Pseudoweinwannia	h.265	897%
Marri	lanchanocarpa Eucalyptus calophylla	h.266	581%
Masiratu	Degeneria vitiensis	h.267	586%
Massandaruba		h.268	483%
Matai	Podocarpus spicatus	h.269	695%
Mengkulang	Heritiera spp,	h.270	585%
Meranti, Buik from 1999	Shorea platiclados	h.271	476%
Meranti, Dark Red	Shorea spp,	h.272	5100%
Meranti, Nemesu from 1999	Shorea pauciflora	h.274	4100%
Meranti, Seraya from 1999	Shura curtisii	h.275	578%
Meranti, Tembaga from 1999	Shorea leprosula	h.276	393%
Meranti, White	Shorea hypochra		4100%
Meranti, Yellow	Shorea multiflora	h.273	0100%
Merawan	Hopea sulcala	h.278	4100%
Merbau	Intsia spp,	h.279	6100%
Morbad	ייינטוע טאף,	11.213	J 100 /0

			rating
Mersawa	Anisoptera laevis	h.280	4100%
Messmate	Eucalyptus obliqua	h.281	897%
Moabi	Baillonella toxisperma	h.282	6100%
Mora	Mora excelsa	h.283	573%
Moustiqaire	Cryptocarya spp,	h.284	4100%
Musizi	Maesopsis eminii	h.286	7100%
Neuburgia	Neuburgia collina	h.287	798%
Nutmeg (Fiji)	Myrstica spp,	h.290	595%
Nutmeg (New Guinea)	Myrstica buchneriana		5100%
Nyatoh	Palaquium spp,	h.292	492%
Oak, European	Quercus robur L.,		4100%
Oak, Japanese	Quercus spp,	h.127	4100%
Oak, New Guinea	Castanopsis acuminatissima	h.293	4100%
Oak, Red	Quercus spp,	h.128	5100%
Oak, Silky, Fishtail	Neorites kevediana		374%
Oak, Silky, Northern	Cardwellia sublimia		5100%
Oak, Silky, Red			686%
Oak, Silky, Southern	Grevillea robusta		581%
Oak, Silky, White			682%
Oak, Tasmanian	Eucalyptus regnans		7100%
·	Argyrodendron		675%
Oak, Tulip, Blush	actinophyllum	11.300	075%
Oak, Tulip, Brown	Argyrodendron trifoliolatum	h.301	975%
Oak Tulin Pad	Argyrodendron	h 302	9100%
Oak, Tulip, Red	peralatum		
Oak, Tulip, White	Petrygota horsfieldii		588%
Oak, White-	Quercus spp,		5100%
Obah	Eugenia spp,	h.304	584%
Obeche	Triplochiton scleroxylon	h.1	560%
Odoko	Scottellila coriancea	h.305	693%
Olive	Olea hochstetteri h.3		7100%
Olivillo	Atextoxicon puncttatum	h.307	590%
Орере	Nauclea diderrichii	h.52	795%
Padauk, African	Pterocarpus soyauxii	h.308	4100%
Palachonella, Fijian	Planchonella vitiensis	h.347	677%
Palachonella, New Guinea	Planchonella kaernbachiana	h.348	492%
Palachonella, New Guinea	Planchonella thyrsoidea	h.349	285%
Palachonella, Solomon	Planchonia papuana	h.350	470%
Island Paldao	Dracontomelum dao	h.309	4100%
Panga Panga	Millettia stuhlmannii	h.312	652%
	Papuacedrus		
Papuacedrus	papuana		6100%
Parinari, Fijian	Oarinari insularum	h.315	4100%
Penarahan	Myristica iners	h.316	6100%
Peppermint, Broad-Leaved	Eucalyptus dives	h.317	6100%
Peppermint, Narrow-Leaved	Eucalyptus australiana	h.318	898%
Peroba, White	Paratecoma peroba	h.319	775%
Persimmon	Diospyros pentamera	h.320	590%
Perupok (Malaysia)	Kokoona spp,	h.321	1100%
Perupok (Malaysia)	Lophopetalum subovatum	h.322	8100%
Pillarwood	Cassipourea malosano	h.323	4100%
Pine / Pine, Stone	Pinus pinea	h.345	6100%
Pine, Aleppo	Pinus halepensis		898%
Pine, Austrian	Pinus nigra		5100%
Pine, Beneguet	Pinus kesya	h.325	8100%
Pine, Black	Prumnoptys amarus h.326 59		
Pine, Bunya			
Pine, Canary Island	Pinus canariensis		888% 6100%
, Canary Island			510070

Pine, Celery-Top	Phyllocladus aspenifolius	h.329	792%
Pine, Hoop	Araucaria cunninghamii	h.330	7100%
Pine, Huon	Dacrydium franklinii	h.331	890%
Pine, King William	Athrotaxis	h.332	785%
Pine, Klinki	selaginoides Araucaria hunsteinii	h.333	4100%
Pine, Loblolly-	Pinus taeda		5100%
Pine, Longpole-	Pinus contorta		5100%
Pine, Maritime	Pinus pinaster	h.334	896%
Pine, Parana Red	Araucaria angustifolia	h.335	643%
Pine, Parana White	Araucaria angustifolia	h.336	772%
Pine, Pitch-, american	Pinus palustris	h.211	683%
Pine, Pitch-, caribbean	Pinus caribaea	h.210	6100%
Pine, Radiata	Pinus radiata	h.337	5100%
Pine, Radiata (New Zealand) (sapwood aac)	Pinus radiata	h.338	7100%
Pine, Radiata (New Zealand) (sapwood boliden)	Pinus radiata	h.339	6100%
Pine, Radiata (New Zealand) (sapwood boron)	Pinus radiata	h.340	689%
Pine, Radiata (New Zealand) (sapwood tanalith)	Pinus radiata	h.341	595%
Pine, Radiata (New Zealand) (sapwoodt untreated)	Pinus radiata	h.342	5100%
Pine, Red	Pinus resinosa	h.343	2100%
Pine, Scotts	Pinus sylvestris L.	h.206	6100%
Pine, Shortleaf	Pinus echinata	h.213	5100%
Pine, Slash (Queensland)	Pinus elliottii		6100%
Pine, Southern	Pinus echinata	h.214	5100%
Pine, Southern, yellow / Pine, Ponderosa	Pinus ponderosa		5100%
Pine, Sugar	Pinus lambertiana		4100%
Pine, western white	Pinus monticola		5100%
Pittosporum (Tasmania)	Pittosporum bicolor Pleiogynium	h.346	4100%
Planchonia	timorense	h.351	595%
Pleiogynium / Podo	Podocarpus neriifolia	h.352	771%
Podocarp, Fijian	Decussocarpus vitiensis	h.353	6100%
Podocarp, Red	Euroschinus falcata	h.354	6100%
Poplar, Black	Populus nigra	h.313	4100%
Poplar, Pink	Euroschinus falcata	h.355	685%
Quandong, Brown	Eurocarpus coorangooloo	h.356	597%
Quandong, Silver	Elaecarpus angustifolius	h.357	582%
Quandong, Solomon Island	Elaecarpus spaericus	h.358	385%
Qumu	Acacia Richii	h.359	586%
Raintree (Fiji)	Samanea saman	h.360	557%
Ramin	Gonystylus spp,	h.361	667%
Redwood / Sequoia		h.362	5100%
Rengas	Gluta spp, Cotylelobium	h.363	4100%
Resak (Malaysia)	melanoxylon Dacrydium	h.364	3100%
Rimu (non-truewood boron)	cupresinum Dacrydium	h.365	782%
Rimu (non-truewood tanalith)	cupresinum	h.366	782%
Rimu (non-truewood untreated)	Dacrydium cupresinum	h.367	888%
Rimu (truewood untreated)	Dacrydium cupresinum		850%
Robinia	Robinia pseudoacacia	h.369	292%
Roble Pellin	Nothofagus obliqua	h.370	693%
Rock maple	Acer saccharum	h.6	5100%
Rosewood, Brasilian Rosewood, Indian	Dalbergia nigra Dalbergia latifolia	h.311 h.310	572% 4100%
Rosewood, New Guinea	Pterocarpus indicus	h.371	584%
Nosewood, New Guillea	. torocarpus iriuicus	11.07 1	JJT/0

Rosewood, Phillippines	Pterocarpus indicus h.372 10.		
Sapupira	Hymenolobium excelsum	h.375	587%
Sasauria (Fiji)	Dysoxylum quercifolium	h.376	489%
Sassafras	Doryphora sassafras	h.377	690%
Sassafras, Southern	Atherospherma moschatum	h.378	784%
Satinash, Blush	Acmena Hemilampra	h.379	3100%
Satinash, Grey	Syzygium gustavioides	h.380	5100%
Satinash, New Guinea	Syzygium butterneranum	h.381	587%
Satinash, Rose	Syzygium francisii	h.382	573%
Satinay	Syncarpia hilii	h.383	4100%
Satinbox	Phenbalium saquameum	h.384	5100%
Satinheart, Green	Geijera salicifolia	h.385	862%
Satinwood, Tulip	Rhodosphaera rhodanthema	h.386	6100%
Scentbark	Eucalyptus aromapholia	h.387	590%
Schizomeria, New Guinea	Schizomeria serrata	h.388	5100%
Schizomeria, Solomon Island	Schizomeria serrata	h.389	474%
Sepetir	Sindora coriaceae	h.390	1100%
Sheoak, Fijian Beach	Casuarina nodiflora	h.391	691%
Sheoak, River	Casuarina cunninghamiana	h.392	774%
Sheoak, Rose	Casuarina torulosa	h.393	872%
Sheoak, Western Australia	Allocasuarina fraserana	h.394	780%
Silkwood, Bolly	Cryptocarya ablata	h.395	864%
Silkwood, Silver	Flindersia acuminata	h.396	792%
Simpoh (Phillippines)	s) Dillenia philippinensis		5100%
Sirus, White	Ailainthus peekelii h.:		597%
Sirus, White	Ailainthus triphysa	h.399	790%
Sloanea	Sloanea spp,	h.400	5100%
Soft wood chips		h.461	4100%
Spruce, European	Picea abies Karst.	h.136	6100%
Spruce, Norway /Norway Spruce	Picea abies	h.137	6100%
Spruce, Sitka	Picea sitchensis	h.138	5100%
Sterculia, Brown	Sterculia spp,	h.230	4100%
Stringybark, Brown	Eucalyptus capitellata	h.403	6100%
Stringybark, Darwin	Eucalyptus tetrodonta	h.404	5100%
Stringybark, Yellow	Eucalyptus muelleriana	h.405	9100%
Suren	Toona cilata	h.407	6100%
Sweet chestnut	Castanea sativa	h.199	2100%
Sycamore	Acer pseudoplatanus	h.5	770%
Sycamore, Satin	succirubrum		780%
Tallowwood	Fucalyptus		4100%
Tatajuba	Bagassa guianesis	h.30	750%
Taun Maleisien			0100%
Taun New Guinea	Pometia pinnata	h.196	6100%
Taun Phillipines	Pometia pinnata	h.197	7100%

	T		
Taun Solomon Island	Pometia pinnata	h.198	490%
Tawa	Beilschmiedia tawa	h.415	862%
Tawa (sap & heart boron)	Beilschmiedia tawa	h.416	677%
Tawa (sap & heart untreated)	Beilschmiedia tawa	h.417	782%
Teak	Tectona grandis	h.418	6100%
Terap	Artocarpus elasticus	h.419	2100%
Terentang	Campnosperma brevipetiolata	h.420	5100%
Terminalia Braun	Terminalia microcarpa	h.421	391%
Terminalia Gelb	Terminalia complanata	h.422	3100%
Tetrameles	Tetrameles nudiflora	h.423	591%
Tingle, Red	Eucalyptus jacksonii	h.424	5100%
Tingle, Yellow	Eucalyptus guilfolei	h.425	5100%
Tomillo	Cedrelinga catenaeformis	h.427	592%
Totara	Podocarpus totara	h.428	780%
Touriga, Red	Calophyllum constatum	h.429	895%
Tristiropsis, New Guinea	Tristiropsis, New Guinea Tristiropsis canarioides h.43		690%
Tulipwood	Harpullia pendula	h.432	799%
Turat	Eucalyptus gomophocephala h.		791%
Turpentine Syncarpia glomulifer		h.433	5100%
Vaivai-Ni-Veikau	Serianthes myriadenia	h.434	577%
Vatica, Phillippines	ca, Phillippines Vatica, manggachopi		779%
Vitex, New Guinea	Vitex cofassus	h.436	5100%
Vuga	Metrosideros collina	h.437	668%
Vutu	Barringtonia edulis	h.438	467%
Walnut, American	Juglans nigra	h.288	5100%
Walnut, Blush	Beilschmiedia obtusifolia h.4		881%
Walnut, European	Junglans regia	h.289	774%
Walnut, Queensland	Endiandra palmerstonii h.4		6100%
Walnut, Rose	Endiandra muelleri	h.441	3100%
Walnut, White	Cryptocarya obovota	h.442	779%
Walnut, Yellow	pancroftii		584%
Wandoo	Eucalyptus wandoo	h.444	7100%
Wattle, Hickory	Acacia penninervis	h.445	781%
Wattle, Silver	Acacia dealbata	h.446	795%
Wengé	Millettia laurentii	h.448	767%
Western Red Cedar	Thuja plicata	h.449	669%
Whitewood, American Woolybutt	Liriodendron tulipifera Eucalyptus longifolia	h.447 h.450	5100% 7100%
Yaka	Dacrydium nausoriensis/nidilum	h.451	688%
Yasi-Yasi I (Fiji)	Syzygium effusum	h.452	492%
Yasi-Yasi II (Fiji)	Syzygium spp,	h.453	5100%
Yate	Eucalyptus cornuta	h.454	694%
Yertschuk	Eucalyptus considenia	n.455	7100%

15 Appendix B: Additional materials

Select material you want to measure, enter number on the device, e.g. concrete b25 = b. 6

15.1 Measuring of building materials

Concrete 200kg/m³ B15 (200 kg concrete per 1m³ sand) b. 5 0,7.3,3% Concrete 350kg/m³ B25 (350 kg concrete per 1m³ sand) b. 6 1,1.3,9% Concrete 500kg/m³ B35 (500 kg concrete per 1m³ sand) b. 7 1,4.3,7% gas-aerated concrete (Hebel) b. 9 1,6100,0% gas-aerated concrete (Ytong PPW4, gross density 0,55) b. 27 1,653,6% Screed Anhydrite screed AE, AFE b. 1 0,030,3% Ardurapid screed-concrete b. 2 0,63,4% Elastizell screed b. 8 1,0.24,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,3.20,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Miscellaneous b. 22 2,85,5% Miscellaneous b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,2.60,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 <t< th=""><th>Material</th><th>Number</th><th>Range</th></t<>	Material	Number	Range
Concrete 350kg/m³ B25 (350 kg concrete per 1m³ sand) b. 6 1,1.3,9% Concrete 500kg/m³ B35 (500 kg concrete per 1m³ sand) b. 7 1,4.3,7% gas-aerated concrete (Hebel) b. 9 1,6100,0% gas-aerated concrete (Ytong PPW4, gross density 0,55) b. 27 1,653,6% Screed Anhydrite screed AE, AFE b. 1 0,030,3% Ardurapid screed-concrete b. 2 0,63,4% Elastizell screed b. 8 1,024,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous b. 3 4,7.34,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,0.38,8% Lime mortar KM 1:3	Concrete		
Concrete 500kg/m³ B35 (500 kg concrete per 1m³ sand) b. 7 1,4.3,7% gas-aerated concrete (Hebel) b. 9 1,6.100,0% gas-aerated concrete (Ytong PPW4, gross density 0,55) b. 27 1,6.53,6% Screed Anhydrite screed AE, AFE b. 1 0,030,3% Ardurapid screed-concrete b. 2 0,63,4% Elastizell screed b. 8 1,024,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with synthetic additives b. 22 2,8.5,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous b. 3 4,734,9% Asbestous cement panels b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4%	Concrete 200kg/m³ B15 (200 kg concrete per 1m³ sand)	b. 5	0,73,3%
gas-aerated concrete (Hebel) b. 9 1,6100,0% gas-aerated concrete (Ytong PPW4, gross density 0,55) b. 27 1,653,6% Screed	Concrete 350kg/m³ B25 (350 kg concrete per 1m³ sand)	b. 6	1,13,9%
gas-aerated concrete (Ytong PPW4, gross density 0,55) b. 27 1,653,6% Screed	Concrete 500kg/m³ B35 (500 kg concrete per 1m³ sand)	b. 7	1,43,7%
Screed Anhydrite screed AE, AFE b. 1 0,030,3% Ardurapid screed-concrete b. 2 0,63,4% Elastizell screed b. 8 1,0.24,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous 4.734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Pol	gas-aerated concrete (Hebel)	b. 9	1,6100,0%
Anhydrite screed AE, AFE b. 1 0,0.30,3% Ardurapid screed-concrete b. 2 0,6.3,4% Elastizell screed b. 8 1,0.24,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,3.20,0% Screed-concrete ZE, ZFE without additives b. 21 0,8.4,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,8.5,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous Asbestous cement panels b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	gas-aerated concrete (Ytong PPW4, gross density 0,55)	b. 27	1,653,6%
Ardurapid screed-concrete b. 2 0,63,4% Elastizell screed b. 8 1,024,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b.	Screed		
Elastizell screed b. 8 1,024,5% Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19	Anhydrite screed AE, AFE	b. 1	0,030,3%
Screed-plaster b. 11 0,49,4% Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous	•	b. 2	0,63,4%
Wood-concrete screed b. 13 5,320,0% Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous	Elastizell screed	b. 8	1,024,5%
Screed-concrete ZE, ZFE without additives b. 21 0,84,6% Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous b. 3 4,734,9% Asbestous cement panels b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Screed-plaster	b. 11	0,49,4%
Screed-concrete ZE, ZFE with bitumen additives b. 22 2,85,5% Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous	Wood-concrete screed	b. 13	5,320,0%
Screed-concrete ZE, ZFE with synthetic additives b. 23 2,411,8% Miscellaneous	Screed-concrete ZE, ZFE without additives	b. 21	0,84,6%
Miscellaneous b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Screed-concrete ZE, ZFE with bitumen additives	b. 22	2,85,5%
Asbestous cement panels b. 3 4,734,9% Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Screed-concrete ZE, ZFE with synthetic additives	b. 23	2,411,8%
Bricks clay bricks b. 4 0,040,4% Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Miscellaneous		
Plaster b. 10 0,377,7% Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Asbestous cement panels	b. 3	4,734,9%
Plaster synthetic b. 12 18,260,8% On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Bricks clay bricks	b. 4	0,040,4%
On-wall plaster b. 20 0,038,8% Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Plaster	b. 10	0,377,7%
Lime mortar KM 1:3 b. 14 0,440,4% Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Plaster synthetic	b. 12	18,260,8%
Lime sand bricks (14 DF (200), gross density 1,9) b. 28 0,112,5% Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	On-wall plaster	b. 20	0,038,8%
Limestone b. 15 0,429,5% MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Lime mortar KM 1:3	b. 14	0,440,4%
MDF b. 16 3,352,1% Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Lime sand bricks (14 DF (200), gross density 1,9)	b. 28	0,112,5%
Cardboard b. 17 9,8100,0% Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Limestone	b. 15	0,429,5%
Stone-timber b. 18 10,518,3% Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	MDF	b. 16	3,352,1%
Polystyrene b. 25 3,950,3% soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Cardboard	b. 17	9,8100,0%
soft-fibre-panel-wood, bitumen b. 26 0,071,1% Concrete mortar ZM 1:3 b. 19 1,010,6%	Stone-timber	b. 18	10,518,3%
Concrete mortar ZM 1:3 b. 19 1,010,6%	Polystyrene	b. 25	3,950,3%
Concrete mortar ZM 1:3 b. 19 1,010,6%	soft-fibre-panel-wood, bitumen	b. 26	0,071,1%
	Concrete mortar ZM 1:3	b. 19	1,010,6%
	Concrete bounded fake boards	b. 24	3,333,2%

The accuracy of measuring building materials depends on manufacturing and using. The used additives may vary from manufacturer to manufacturer, therefore deviating measure results may occur. The given measuring-range is the theoretically measurable range.

15.2 Measuring of agricultural bulk cargo

		9	
Material	Number	Range	Comment
Softwood chips	h.461	4100%	Injection probe GSF 38/50
Wheat	h.462	560%	Injection probe GSF 38/50 or GMS 300/91
Barley	h.463	460%	Injection probe GSF 38/50 or GMS 300/91
Hay	h.464	570%	Injection probe GSF 40 or GMS 300/91
Straw	h.465	572%	Injection probe GSF 40 or GMS 300/91

15.3 Estimation of additional materials

Following materials may be well estimated with the help of the device, but you won't reach such high accuracy than with materials listed in appendix A and B.

Material	Number	Comment
Flax	h. 458	Injection probe GSF 38/40/50 or GMS 300/91
Cork	h. A	
Fibre board	h. C	
Wood fibre insulating wall panel	h. C	
Wood fibre hard disks	h. C	
Kauramin-fake boards	h. C	
Melamine-fake boards	h. A	
Paper	h. C	
Phenolic resin-fake boards	h. A	
Textiles	h. C (D)	