# **INSTRUCTION MANUAL**

# HI83306

**Environmental Analysis Photometer** 





# Dear Customer,

Thank you for choosing a Hanna Instruments product.

Please read this instruction manual carefully before using the instrument.

This manual will provide you with the necessary information for correct use of the instrument, as well as a precise idea of its versatility.

If you need additional technical information, do not hesitate to e-mail us at tech@hannainst.com or view our worldwide contact list at www.hannainst.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner, Hanna Instruments Inc., Woonsocket, Rhode Island, 02895, USA.

| 1. | PRELIMINARY EXAMINATION                            | . 5  |
|----|----------------------------------------------------|------|
| 2. | SAFETY MEASURES                                    | . 5  |
| 3. | SPECIFICATIONS                                     | . 6  |
| 4. | DESCRIPTION                                        | . 7  |
|    | 4.1. GENERAL DESCRIPTION                           | . 7  |
|    | 4.2. PRECISION AND ACCURACY                        | . 7  |
|    | 4.3. FUNCTIONAL DESCRIPTION                        | . 8  |
|    | 4.4. PRINCIPLE OF OPERATION                        | 9    |
|    | 4.5. OPTICAL SYSTEM                                | 10   |
| 5. | GENERAL OPERATIONS                                 |      |
|    | 5.1. POWER CONNECTION AND BATTERY MANAGEMENT       |      |
|    | 5.2. GENERAL SETUP                                 | 11   |
|    | 5.3. USING HANNA DIGITAL ELECTRODES                | . 14 |
|    | 5.4. MODE SELECTION                                | 14   |
|    | 5.5. LOGGING DATA                                  | 15   |
|    | 5.6. ADDING SAMPLE / USER NAMES TO LOG DATA        | 15   |
|    | 5.7. DATA MANAGEMENT                               |      |
|    | 5.8. CONTEXTUAL HELP                               | 17   |
| 6. | PHOTOMETER MODE                                    | . 17 |
|    | 6.1. METHOD SELECTION                              | 17   |
|    | 6.2. COLLECTING AND MEASURING SAMPLES AND REAGENTS |      |
|    | 6.2.1. PROPER USE OF SYRINGE                       | 18   |
|    | 6.2.2. PROPER USE OF DROPPER                       |      |
|    | 6.2.3. PROPER USE OF POWDER PACKET                 |      |
|    | 6.3. CUVETTE PREPARATION.                          |      |
|    | 6.4. TIMERS AND MEASUREMENT FUNCTIONS              |      |
|    | 6.5. CHEMICAL FORMULA / UNIT CONVERSIONS           |      |
|    | 6.6. METER VALIDATION / CAL CHECK                  |      |
|    | 6.7. ABSORBANCE MEASUREMENTS                       |      |
| 7. | PROBE MODE                                         |      |
|    | 7.1. pH CALIBRATION                                |      |
|    | 7.2. pH CALIBRATION MESSAGES                       |      |
|    | 7.3. pH MEASUREMENT                                |      |
|    | 7.4. pH MEASUREMENT MESSAGES / WARNINGS            |      |
|    | 7.5. pH GLP                                        |      |
|    | 7.6 nH FLECTRODE CONDITIONING AND MAINTENANCE      | 29   |

| 8. METHOD PROCEDURES          | 31  |
|-------------------------------|-----|
| 8.1. AMMONIA LOW RANGE        | 31  |
| 8.2. AMMONIA MEDIUM RANGE     | 34  |
| 8.3. AMMONIA HIGH RANGE       | 37  |
| 8.4. CHLORINE, FREE           | 40  |
| 8.5. CHLORINE, TOTAL          | 43  |
| 8.6. CHROMIUM (VI) LOW RANGE  | 46  |
| 8.7. CHROMIUM (VI) HIGH RANGE | 48  |
| 8.8. COLOR OF WATER           |     |
| 8.9. COPPER LOW RANGE         | 52  |
| 8.10. COPPER HIGH RANGE       | 54  |
| 8.11. CYANURIC ACID           | 56  |
| 8.12. MOLYBDENUM              | 58  |
| 8.13. NICKEL LOW RANGE        | 61  |
| 8.14. NICKEL HIGH RANGE       |     |
| 8.15. NITRATE                 |     |
| 8.16. NITRITE HIGH RANGE      |     |
| 8.17. OXYGEN, DISSOLVED       |     |
| 8.18. pH                      |     |
| 8.19. PHOSPHATE LOW RANGE     | 76  |
| 8.20. PHOSPHATE HIGH RANGE    |     |
| 8.21. SILICA LOW RANGE        |     |
| 8.22. SILVER                  |     |
| 8.23. ZINC                    |     |
| 9. WARNINGS & ERRORS          |     |
| 10. STANDARD METHODS          |     |
| 11. ACCESSORIES               |     |
| 11.1. REAGENT SETS            |     |
| 11.2. pH ELECTRODES           |     |
| 11.3. pH SOLUTIONS            |     |
| 11.4. OTHER ACCESSORIES       |     |
| 12. ABBREVIATIONS             | 101 |
| CERTIFICATION                 |     |
| RECOMMENDATIONS FOR USERS     | 103 |
| WARRANTY                      | 103 |

#### 1. PRELIMINARY EXAMINATION

Remove the instrument and accessories from the packaging and examine it carefully to make sure that no damage has occurred during shipping. Notify your nearest Hanna Customer Service Center if damage is observed.

Each H183306 is supplied with:

- Sample Cuvette and Cap (4 pcs.)
- Cloth for Wiping Cuvettes
- Scissors
- USB Cable
- 5 Vdc Power Adapter
- Instruction Manual
- DO bottle (glass stopper bottle)
- Quality Certificate

Note: Save all packing material until you are sure that the instrument works correctly. Any damaged or defective item must be returned in its original packing material with the supplied accessories.

#### 2. SAFETY MEASURES



- The chemicals contained in the reagent kits may be hazardous if improperly handled.
- Read the Safety Data Sheets (SDS) before performing tests.
- Safety equipment: Wear suitable eye protection and clothing when required, and follow instructions carefully.
- Reagent spills: If a reagent spill occurs, wipe up immediately and rinse with plenty of water. If
  reagent contacts skin, rinse the affected area thoroughly with water. Avoid breathing released
  vapors.
- Waste disposal: for proper disposal of reagent kits and reacted samples, contact a licensed waste disposal provider.

# 3. SPECIFICATIONS

| Measurement Channels |                                     | 4 x optical channels<br>1 x digital electrode channel (pH measurement)                                      |  |
|----------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|                      | Range                               | 0.000 to 4.000 Abs                                                                                          |  |
|                      | Resolution                          | 0.001 Abs                                                                                                   |  |
|                      | Accuracy                            | ±0.003 Abs (at 1.000 Abs)                                                                                   |  |
|                      | Light Source                        | light emitting diode                                                                                        |  |
| Absorbance           | Bandpass Filter Bandwidth           | 8 nm                                                                                                        |  |
|                      | Bandpass Filter Wavelength Accuracy | $\pm$ 1.0 nm                                                                                                |  |
|                      | Light Detector                      | silicon photocell                                                                                           |  |
|                      | Cuvette Types                       | round, 24.6 mm diameter                                                                                     |  |
|                      | Number of Methods                   | 27                                                                                                          |  |
|                      | Range                               | -2.00 to 16.00 pH (± 1000.0 mV)*                                                                            |  |
|                      | Resolution                          | 0.01 pH (0.1 mV)                                                                                            |  |
|                      | Accuracy                            | $\pm 0.01$ pH ( $\pm 0.2$ mV) (@ 25 °C/77 °F)                                                               |  |
| рН                   | Temperature Compensation            | ATC (-5.0 to 100.0 °C; 23.0 to 212.0 °F)*                                                                   |  |
|                      | Calibration                         | 2 points, eligible from 5 available buffers (4.01, 6.86, 7.01, 9.18, 10.01 pH)                              |  |
|                      | Electrode                           | Intelligent pH / temperature electrode                                                                      |  |
|                      | Range                               | -20.0 to 120.0°C (-4.0 to 248.0 °F)                                                                         |  |
| Temperature          | Resolution                          | 0.1 °C (0.1 °F)                                                                                             |  |
|                      | Accuracy                            | $\pm 0.5$ °C ( $\pm 0.9$ °F) (@ 25 °C / 77 °F)                                                              |  |
|                      | Logging                             | 1000 readings (mixed photometer and electrode)                                                              |  |
|                      | Display                             | 128 x 64 pixel B/W LCD with backlight                                                                       |  |
|                      | USB-A (Host) Functions              | mass-storage host                                                                                           |  |
|                      | USB-B (Device) Functions            | power input, mass-storage device                                                                            |  |
| Additional           | Battery Life                        | > 500 photometer measurements, or 50 hours of continuous pH measurement                                     |  |
| Specifications       | Power Supply                        | 5 Vdc USB 2.0 power adapter/type micro-B connector 3.7 Vdc Li-polymer rechargeable battery, non-serviceable |  |
|                      | Environment                         | 0 to 50 °C (32 to 122 °F);<br>0 to 95% RH, non-serviceable                                                  |  |
|                      | Dimensions                          | 206 x 177 x 97 mm (8.1 x 7.0 x 3.8")                                                                        |  |
|                      | Weight                              | 1.0 kg (2.2 lbs.)                                                                                           |  |
|                      |                                     |                                                                                                             |  |

 $<sup>^*\</sup>mbox{Limits}$  will be reduced to actual probe/sensor limits.

#### 4. DESCRIPTION

#### 4.1.GENERAL DESCRIPTION

H183306 multiparameter photometer is compact and versatile meter with two measurement modes: Absorbance and pH/ mV. Absorbance mode include CAL Check feature and 27 different methods that cover a wide variety of applications, making it ideal for both benchtop and portable operation.

- Digital electrode input for pH measurements
- Certified CAL Check cuvettes to confirm meter functionality
- Dual purpose micro-USB flash drive
- Li-polymer rechargeable battery
- Auto-off
- Absorbance mode
- User and sample name entry
- GLP features

#### 4.2.PRECISION AND ACCURACY

Precision is how closely repeated measurements are to one another. Precision is usually expressed as standard deviation (SD).

Accuracy is defined as the closeness of a test result to the true value.

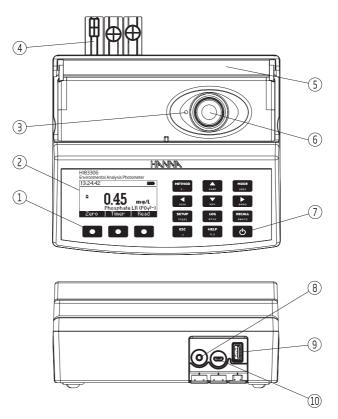
Although good precision suggests good accuracy, precise results can be inaccurate. The figure explains these definitions.

For each method, the accuracy is expressed in the related measurement section.



Precise, accurate

Not precise, accurate






Precise, not accurate

Not precise, not accurate

## 4.3. FUNCTIONAL DESCRIPTION



- 1) Splash-proof keypad
- 2) Liquid Crystal Display (LCD)
- 3) Indexing mark
- 4) Protective port covers
- 5) Light-blocking cover panel
- 6) Cuvette holder
- 7) ON/OFF power button
- 8) 3.5 mm TRRS (jack) input for digital electrodes
- 9) Standard USB host connector for data transfer to a USB flash drive
- 10) Micro-USB device connector for power or PC interface

# **Keypad Description**

The keypad contains 12 direct keys and 3 functional keys with the following functions:

Pre

Press the functional keys to perform the function displayed above them on the LCD.

METHOD

Press to access the list of photometer methods.

ZABC

Press to move up in a menu or a help screen, to increment a set value, or to access second level functions.

MODE 3DEF

Press to toggle between photometer and pH (electrode) mode.

4 GH1

Press to move left in a menu or to decrement a set value.



Press to move down in a menu or a help screen, to decrement a set value, or to access second level functions.



Press to move right in a menu or to increment a set value.

SETUP 7PQRS

Press to access the setup screen.

LOG atuv

Press to log the current reading.

RECALL 9WXYZ Press to review saved loas.

ESC

Press to exit the current screen.

HELP

Press to display the help screen.

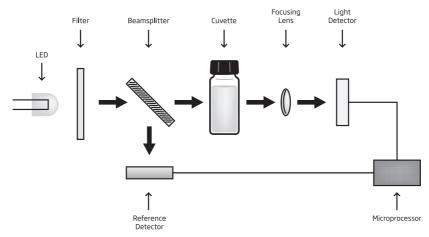


ON/OFF power button.

#### 4.4. PRINCIPLE OF OPERATION

Absorption of light is a typical phenomenon of interaction between electromagnetic radiation and matter. When a light beam crosses a substance, some of the radiation may be absorbed by atoms, molecules or crystal lattices.

If pure absorption occurs, the fraction of light absorbed depends both on the optical path length through the matter and on the physical-chemical characteristics of the substance according to the Lambert-Beer Law:


$$\begin{array}{c} -\text{log I/I}_{_{\mathcal{O}}} = \epsilon_{_{\lambda}}\,\text{cd} \\ \text{A} = \epsilon_{_{\lambda}}\,\text{cd} \end{array}$$

 $\begin{array}{lll} I_o & = & \text{intensity of incident light beam} \\ I & = & \text{intensity of light beam after absorption} \\ \epsilon_\lambda & = & \text{molar extinction coefficient at wavelength } \lambda \\ c & = & \text{molar concentration of the substance} \\ d & = & \text{optical path through the substance} \end{array}$ 

Therefore, the concentration "c" can be calculated from the absorbance of the substance as the other factors are constant.

Photometric chemical analysis is based on specific chemical reactions between a sample and reagent to produce a light-absorbing compound.

#### 4.5. OPTICAL SYSTEM

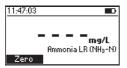


Instrument Block Diagram

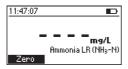
The internal reference system (reference detector) of the HI83306 photometer compensates for any drifts due to power fluctuations or ambient temperature changes, providing a stable source of light for your blank (zero) measurement and sample measurement.

LED light sources offer superior performance compared to tungsten lamps. LEDs have a much higher luminous efficiency, providing more light while using less power. They also produce little heat, which could otherwise affect electronic stability. LEDs are available in a wide array of wavelengths, whereas tungsten lamps have poor blue/violet light output.

Improved optical filters ensure greater wavelength accuracy and allow a brighter, stronger signal to be received. The end result is higher measurement stability and less wavelength error.


A focusing lens collects all of the light that exits the cuvette, eliminating errors from cuvette imperfections and scratches, eliminating the need to index the cuvette.

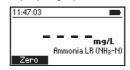
#### 5. GENERAL OPERATIONS


#### 5.1. POWER CONNECTION AND BATTERY MANAGEMENT

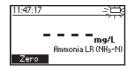
The meter can be powered from an AC/DC adapter (included) or from the built-in rechargeable battery. The meter will perform an auto-diagnostic test when it is first powered on. During this test, the HANNA® logo will appear on the LCD. After 5 seconds, if the test was successful, the last method used will appear on the display. The battery icon on the LCD will indicate the battery status:

- battery is charging from external adapter




- battery capacity (no external adapter)




- battery exhausted (no external adapter)



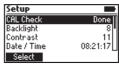
- battery fully charged (meter connected to AC/DC adapter)



- battery near 0% (no external adapter)



To conserve battery, the meter will turn off automatically after 15 minutes of inactivity (30 minutes before a READ measurement). If a photometer measurement is on the screen, an auto-log is created before shutdown.


#### 5.2. GENERAL SETUP

Press SETUP key to enter in Setup menu, highlight desired option using



# CAL Check (Photometer Only)

Press **Select** to enter the CAL Check screen. The date, time and values for the last CAL Check are displayed on the screen. To start a new CAL Check press **Check** key and follow the prompts on the screen.



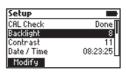


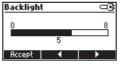
# Temperature Unit (pH Only)

Option: °C or °F

Press the functional key to select the desired temperature unit.




# **Backlight**


Values: 0 to 8

Press the Modify key to access the backlight intensity.

Use the functional keys or the  $\blacktriangleleft$   $\blacktriangleright$  keys to increase or decrease the value.

Press the **Accept** key to confirm or **ESC** to return to the **Setup** menu without saving the new value.






#### Contrast


Values: 0 to 20

Press the **Modify** key to change the display's contrast.

Use the functional keys or the  $\blacktriangleleft$   $\blacktriangleright$  keys to increase or decrease the value.

Press the **Accept** key to confirm the value or **ESC** to return to the **Setup** menu without saving the new value.





#### Date / Time

Press the Modify key to change the date/time.

Press the functional keys or the ◀ ▶ keys to highlight the value to be modified (year, month, day, hour, minute or second).

Use the \(\bigset\) \(\bigset\) keys to change the value.

Press the **Accept** key to confirm or **ESC** to return to the **Setup** without saving the new date or time.



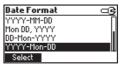


#### Time Format

Option: AM/PM or 24-hour

Press the functional key to select the desired time format.




#### Date Format

Press the **Modify** key to change the Date Format.

Use the  $\blacktriangle$   $\blacktriangledown$  keys to select the desired format.

Press the **Select** key to confirm or **ESC** to return to the **Setup** menu without saving the new format.

#### 





# **Decimal Separator**

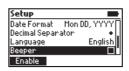

Option: Comma (,) or Period (.)

Press the functional key to select the desired decimal separator. The decimal separator is used on the measurement screen and CSV files.

#### Language

Press the **Modify** key to change the Language. Use the **A V** keys to select the desired language.

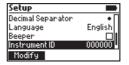
Press **Select** to choose one of the 7 languages installed.






#### Beeper

Option: Enable or Disable

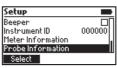

When enabled, a short beep is heard every time a key is pressed. A long beep alert sounds when the pressed key is not active or an error is detected. Press the functional key to enable/disable the beeper.



#### Instrument ID

Option: 0 to 999999

This option is used to set the instrument's ID (identification number). Press the Modify key to access the instrument ID screen. Use the functional keys or the ◀ ▶ keys to highlight the digit to be modified. Press the ▲ ▼ keys in order to set the desired value. Press the Accept key to confirm the value or ESC to return to the Setup menu without saving the new value.




#### Meter Information

Press the **Select** key to view the model, serial number, firmware version and selected language. Press **ESC** to return to the **Setup** menu.



| Meter Information |             |  |
|-------------------|-------------|--|
| Model             | HI83306     |  |
| Serial #          | AAA00000000 |  |
| Firmware          | 1.00        |  |
| Language          | English     |  |
| www.hannainst.com |             |  |



| Probe Information |          |  |
|-------------------|----------|--|
| Model             | HI 11310 |  |
| Serial#           | 000010   |  |
| Firmware          | 1.04     |  |
|                   |          |  |
| www.hannainst.com |          |  |

# Probe Information (pH mode only)

Press the **Select** key to view model number, serial number and firmware version for the connected probe.

Press **ESC** to return to the **Setup** menu.

# 5.3. USING HANNA DIGITAL ELECTRODES

The HI83306 can be used to perform direct pH measurements by connecting a HANNA® digital pH electrode with a 3.5 mm TRRS connector. To begin taking probe measurements, connect the electrode to the 3.5 mm port marked with "EXT PROBE" located at the rear of the meter. If the meter is in "Photometer Mode", set the meter to "Probe Mode" by pressing the MODE key.

#### 5.4. MODE SELECTION

The H183306 has two operational modes: Photometer Mode and Probe Mode.

Photometer Mode enables on-demand measurement of a cuvette using the integrated optical system. Photometric-related functions, such as Method selection, Zero, Read, and Timers are available in this mode.

Probe Mode enables continuous measurement using a Hanna Digital Electrode connected to the 3.5 mm port. Probe-related functions, such as calibration and GLP, are available in this mode. To switch between Photometer Mode and Probe Mode, use the

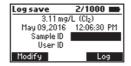
Note: The active mode cannot be switched while in menus, such as Setup, Recall, Method, etc.

#### 5.5. LOGGING DATA

The instrument features a data log function to help you keep track of all your analysis. The data log can hold 1000 individual measurements. Storing, viewing and deleting the data is possible using the **LOG** and **RECALL** keys.

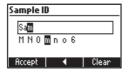
Storing data: You can store only a valid measurement. Press **LOG** and the last valid measurement will be stored with date and time stamp.



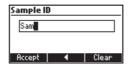



#### 5.6. ADDING SAMPLE / USER NAMES TO LOG DATA

A sample ID and user ID can be added to the saved log. Use the  $\blacktriangle \blacktriangledown$  keys to highlight the Sample ID or User ID then press **Modify**.


#### Text Entry

Sample ID and User ID care entered using the alphanumeric multi-tapping keypad.




Enter one character at a time by pressing the key with the assigned character repeatedly until the desired character is highlighted. For reference, a list of the characters available for the current key will be shown under the text box.

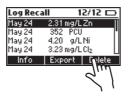
The character will be entered after a two-second delay or after another key is pressed.

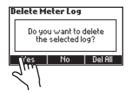


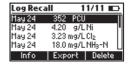
Once all characters have been entered, press **Accept** to use the displayed text.



The following functions are available during Text Entry:


- Accept: Press to accept the current displayed text.
- Arrow: Press to delete the last character.
- Clear: Press to delete all characters.



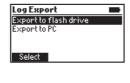


Press to discard all changes and return to the previous screen.

#### 5.7. DATA MANAGEMENT

Viewing and deleting: You can view, export and delete the data by pressing the **RECALL** key. Use the **A V** keys to scroll through the saved logs. Press **Info** to view additional information about the selected log.








#### Data Export:

Log data can be exported to a USB flash drive or to a PC. To access Data Export functions, press **Recall** then **Export**.





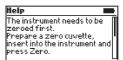


Use the **A V** keys to select the desired export location.

For export to USB Flash Drive, insert the USB Flash Drive into the dedicated port at the back of the meter labeled HOST USB, then follow the on-screen prompts.

For export to PC, connect the meter to a PC using the supplied micro-USB cable. Insert the cable into the port at the back of the meter labeled PC PWR. Follow the on-screen prompts. When the meter says PC connected, use a file manager (such as Windows Explorer or Mac Finder) to move the file from the meter to the PC. The meter will appear as a removable disk.

Log data is exported as a single file containing all logged photometer and probe data. The file name is: "HI83306.csv". The CSV file (Comma-Separated Values) may be opened with a text editor or spreadsheet application.


#### 5.8. CONTEXTUAL HELP

HI83306 offers an interactive contextual help mode that assists the user at any time.

To access the help screen press **HELP**.

The instrument will display additional information related to the current screen. To read all the available information, scroll the text using the  $\blacktriangle$   $\blacktriangledown$  keys.

To exit help mode press **ESC** key and the meter will return to the previous screen.

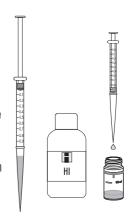


#### 6. PHOTOMETER MODE

#### 6.1. METHOD SELECTION

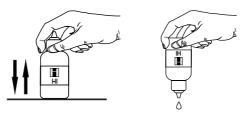
In order to select the desired method press the **METHOD** key and a screen with the available methods will appear.

Press the ▲ ▼ keys to highlight the desired method. Press **Select**.



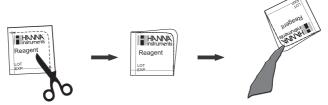

After the desired method is selected, follow the procedure described in the related section. Before performing a method read all the instructions carefully.

#### 6.2. COLLECTING AND MEASURING SAMPLES AND REAGENTS


#### 6.2.1. PROPER USE OF SYRINGE

- (a) Push the plunger completely into the syringe and insert the tip into the solution.
- (b) Pull the plunger up until the lower edge of the seal is exactly on the mark for the desired volume.
- (c) Take out the syringe and clean the outside of the syringe tip, be sure that no drops are hanging on the tip of the syringe. Then, keeping the syringe in vertical position above the cuvette, push the plunger down into the syringe, the desired volume has been delivered into the cuvette.



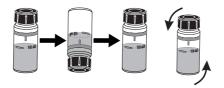

#### 6.2.2. PROPER USE OF DROPPER

- (a) For reproducible results, tap the dropper on the table several times and wipe the outside of the tip with a cloth.
- (b) Always keep the dropper bottle in a vertical position while dosing the reagent.

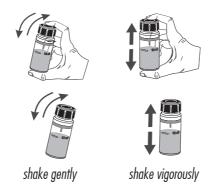


#### 6.2.3. PROPER USE OF POWDER PACKET

- (a) Use scissors to open the powder packet
- (b) Push the edges of the packet to form a spout
- (c) Pour out the content of the packet.




#### 6.3. CUVETTE PREPARATION


Proper mixing is very important for reproducibility of the measurements. The proper mixing technique for each method is listed in the method procedure.

(a) Invert the cuvette a couple of times or for a specified time: hold the cuvette in the vertical position. Turn the cuvette upside-down and wait for all of the solution to flow to the cap end, then return the cuvette to the upright vertical position and wait for all of the solution to flow to the cuvette bottom. This is one inversion. The correct speed for this mixing technique is 10-15 complete inversions in 30 seconds.

This mixing technique is indicated with "invert to mix" and the following icon:



(b) Shaking the cuvette, moving the cuvette up and down. The movement may be gentle or vigorous. This mixing method is indicated with "shake gently" or "shake vigorously", and one of the following icons:



In order to avoid reagent leaking and to obtain more accurate measurements, close the cuvette first with the supplied HDPE plastic stopper and then the black cap.

Whenever the cuvette is placed into the measurement holder, it must be dry outside and free of fingerprints, oil or dirt. Wipe it thoroughly with HI731318 or a lint-free cloth prior to insertion.

Shaking the cuvette can generate bubbles in the sample, causing higher readings. To obtain accurate measurements, remove such bubbles by swirling or by gently tapping the cuvette.



Do not let the reacted sample stand too long after reagent is added. For best accuracy, respect the timings described in each specific method.

It is possible to take multiple readings in a row, but it is recommended to take a new zero reading for each sample and to use the same cuvette for zeroing and measurement when possible.

Discard the sample immediately after the reading is taken, or the glass might become permanently stained.

All the reaction times reported in this manual are at 25 °C (77 °F). In general, the reaction time should be increased for temperatures lower than 20 °C (68 °F), and decreased for temperatures higher than 25 °C (77 °F).



#### Interference

In the method measurement section the most common interferences that may be present in a typical water sample have been reported. It is possible that a particular application could introduce other compounds that will also interfere.

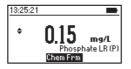
#### 6.4. TIMERS AND MEASUREMENT FUNCTIONS

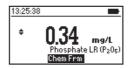
Each method requires a different preparation procedure, reaction times, sample preparations, etc. If a timer or timers are necessary for proper sample preparation, the **Timer** key will be available.

To use a reaction timer, press the **Timer** key.

The default timer will start immediately. To stop and reset the timer, press **Stop**.

If the selected method requires more than one timer, the meter will automatically select each timer in the appropriate order. To bypass the default order, you may press the desired key to activate a different timer (only while the current timer is stopped). Press **Continue** to start the active timer.


For some methods, the timer is only necessary after a **Zero** measurement has been performed. In this case, the timer key will only be available after the **Zero** measurement has been performed.


If the method requires a **Zero** or **Read** measurement after a timer has expired, the meter will automatically perform the appropriate action. Follow the instructions in the Method Procedure.

To perform a **Zero** or **Read** measurement, insert the appropriate prepared cuvette, then press the **Zero** or **Read** key. A **Zero** measurement must be conducted before **Read** measurements.

#### 6.5. CHEMICAL FORMULA / UNIT CONVERSION

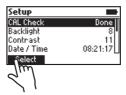
Chemical formula/unit conversion factors are pre-programmed into the instrument and are method specific. In order to view the displayed result in the desired chemical formula press keys to access the second level function and then press the **Chem Frm** key to toggle between the available chemical formulas for the selected method.



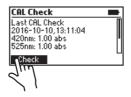


#### 6.6. METER VALIDATION / CAL CHECK

WARNING: Do not validate the meter with standard solutions other than the HANNA® CAL Check Standards. For accurate validation results, please perform tests at room temperature (18 to 25  $^{\circ}$ C; 64.5 to 77.0  $^{\circ}$ F).


Validation of the H183306 involves absorbance measurements of certified HANNA® CAL Check Standards (see "Accessories"). The "CAL Check" screen guides the user through the measurement of each CAL Check Standard and applies the factory calibration corrections to each measurement. The H183306 stores the results of the most recent CAL Check measurements which may be viewed on the "CAL Check" screen. Compare these results with the values printed on the Certificate provided with each HANNA® CAL Check Standards kit.

To perform a validation:


1. Press **Setup** button.



2. Highlight CAL Check, then press Select.



 Follow the prompts on the screen. The meter will prompt to measure each cuvette provided in the HANNA® CAL Check Standards kit. To abort the process at any time, press ESC button.



4. Press **ESC** to return in **Setup** menu.



#### 6.7. ABSORBANCE MEASUREMENTS

Raw absorbance measurements may be performed on the HI83306 for personal or diagnostic purposes. For example, you may monitor the stability of a reagent blank by occasionally measuring its absorbance versus deionized water.

To measure the raw absorbance of a prepared sample:

1. Enable "Photometer Mode" if necessary by pressing the MODE key.



2. Press the **METHOD** key.



- 3. Highlight the appropriate Absorbance method (according to the wavelength to be used), then press **Select**. Absorbance methods are located at the bottom of the method list.
- 4. Prepare the sample cuvette according to the method.
- 5. Insert a cuvette filled with deionized water, then press Zero.
- 6. Insert the prepared sample cuvette, then press Read.

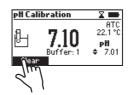
WARNING: Never use Absorbance methods for validation using HANNA® CAL Check cuvettes. The factory calibration corrections for CAL Check cuvettes are applied while in CAL Check mode only!

# **7. PROBE MODE** 7.1. pH CALIBRATION

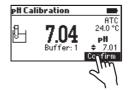
Press MODE to enter in pH/ mV measurement mode.

Press **Calibrate** to access electrode calibration functions.






# Calibration Mode


While in pH Calibration Mode, the display will show the current pH reading, the current temperature reading, the current selected buffer, and the buffer number ("Buffer: 1" for the 1st buffer, "Buffer: 2" for the 2nd buffer).

The following functions are available in pH Calibration Mode:

• Clear: Press to clear the current calibration from the probe.



 Confirm: Press to accept the current calibration point. Only available if the measurement is stable and within the limits for the selected buffer.







Press to cycle through the list of available buffers: 4.01, 6.86, 7.01, 9.18, 10.01 pH.



Press to exit calibration and return to pH Measurement Mode.

# Preparation

Pour small quantities of the buffer solutions into clean beakers. If possible, use plastic beakers to minimize any EMC interferences. For accurate calibration and to minimize cross-contamination, use two beakers for each buffer solution: one for rinsing the electrode and one for calibration. If you are measuring in the acidic range, use pH 7.01 or 6.86 as the first buffer and pH 4.01 as the second buffer. If you are measuring in the alkaline range, use pH 7.01 or 6.86 as the first buffer and pH 10.01 or 9.18 as the second buffer.

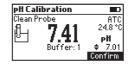
#### Procedure

Calibration can be performed using one or two calibration buffers. For more accurate measurements, a two-point calibration is recommended.

Submerse the pH electrode approximately 3 cm ( $1\frac{1}{4}$ ") into a buffer solution and stir gently. From the Probe Measurement screen, press the **Calibrate** key to begin the calibration process.

When the reading is stable and close to the selected buffer, the **Confirm** key will become available. Press **Confirm** to accept and store the calibration point.

The meter will now prompt for the second buffer ("Buffer: 2"). To use only a one-point calibration, press to exit calibration mode at this time. The meter will store the calibration information to the probe and return to Measurement mode. To continue calibrating with a second buffer, rinse and submerse the pH electrode approximately 3 cm ( $1\frac{1}{4}$ ") into the second buffer solution and stir gently. If necessary, press keys to select a different buffer value.


When the reading is stable and close to the selected buffer, the **Confirm** key will become available. Press **Confirm** to accept and store the second calibration point.

The meter will store the two-point calibration information to the probe and return to Measurement mode. The list of calibrated buffers will appear at the bottom of the screen.

# 7.2. pH CALIBRATION MESSAGES

#### Clean Probe:

The "Clean Probe" message indicates poor electrode performance (offset out of accepted window, or slope under the accepted lower limit). Often, cleaning the probe will improve the pH electrode's response. See pH Electrode Conditioning and Maintenance for details. Repeat calibration after cleaning.




#### Check Probe & Buffer:

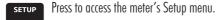
The "Check Probe & Buffer" message appears when there is a large difference between the pH measurement and the selected buffer value, or the electrode slope is outside of the accepted slope limit. You should check your probe and confirm the correct buffer selection. Cleaning may also improve this response.



## Wrong Temperature:

The buffer temperature is too extreme for the selected buffer value.




# 7.3. ph Measurement

The HI83306 can be used to perform direct pH measurements by connecting a HANNA® digital pH electrode with a 3.5 mm TRRS connector. To begin taking probe measurements, connect the electrode to the 3.5 mm port marked with EXT PROBE located at the rear of the meter. If the meter is in "Photometer Mode", set the meter to "Probe Mode" by pressing the MODE key.

While taking pH probe measurements, the following functions are available:

- Calibrate: Press to access electrode calibration functions.
- GLP: Press to review the last calibration information, including date/time, buffers used, slope, and offset.
- Range: Press to switch between "pH" units and "mV" units.

| MODE | Press to switch to Photometer mode. |
|------|-------------------------------------|
| BDEF |                                     |



Press to log the current measurement.

Press to review the meter's log history.

Press to view contextual help information.

For high accuracy it is recommended to calibrate your electrode often. pH electrodes should be recalibrated at least once per week, but daily calibration is recommended. Always recalibrate after cleaning an electrode. See page 23 for more information on pH calibration.

#### To take pH measurements:

- Remove the protective cap and rinse the electrode with water.
- Collect some sample in a clean, dry beaker.
- Preferably, rinse the electrode with a small amount of sample. Discard the rinse.
- Submerse the electrode tip approximately 3 cm (1½") into the sample to be tested and stir the sample gently. Make sure the electrode junction is completely submersed.
- Allow time for the electrode to stabilize in the sample. When the symbol disappears, your reading is stable.

If measurements are taken successively in different samples, it is recommended to rinse the electrodes thoroughly with deionized or distilled water and then with some of the next sample to prevent cross-contamination.

pH measurements are affected by temperature. HANNA® Digital pH electrodes include a built-in temperature sensor and automatically calculate corrected pH values. The measured temperature is displayed on the screen with the pH measurements.

# 7.4. pH MEASUREMENT MESSAGES / WARNINGS

#### No Probe-

No probe is connected or the probe is broken.

## Connecting:

The meter has detected a probe and is reading the probe configuration and calibration information.

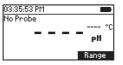
# Incompatible Probe:

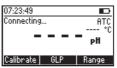
The connected probe is not compatible with this device.

#### **Incompatible Calibration:**

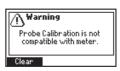
The probe's current calibration is not compatible with this meter. The calibration must be cleared to use this probe.

# **Exceeded Probe Range:**


The pH and/or temperature measurement exceed the specifications of the probe. The affected measurement value(s) will be flashing.


# **Broken Temperature Sensor:**

The temperature sensor inside the probe is broken. Temperature compensation will revert to a fixed value of 25 °C (77 °C).


#### Cal Due:

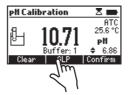
The probe has no calibration. See section Probe Calibration.





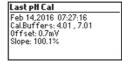










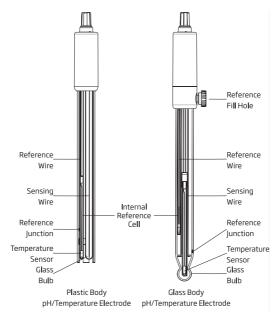


# 7.5. pH GLP

Good Laboratory Practice (GLP) refers to a quality control function used to ensure uniformity and consistency of sensor calibrations and measurements. To view the GLP information, press the **GLP** key from the Probe Measurement screen.



The pH GLP screen displays the following information about the last pH calibration:

- Date and time of the last calibration
- List of buffers used in the last calibration
- Calculated slope and offset






• Press **ESC** to return in measurement mode.



# 7.6. ph electrode conditioning and maintenance



Remove the protective cap of the pH electrode.

#### DO NOT BE ALARMED IF SALT DEPOSITS ARE PRESENT.

This is normal with electrodes. They will disappear when rinsed with water.

During transport, tiny bubbles of air may form inside the glass bulb affecting proper functioning of the electrode. These bubbles can be removed by "shaking down" the electrode as you would do with a glass thermometer. If the bulb and/or junction is dry, soak the electrode in HI70300 or HI80300 storage solution for at least one hour.

#### For refillable electrodes:

If the filling solution (electrolyte) is more than  $2\frac{1}{2}$  cm (1") below the fill hole, add HI7082 or HI8082 3.5M KCI Electrolyte Solution for double junction electrodes.

Unscrew the fill hole cover during measurements so the liquid reference junction maintains an outward flow of electrolyte.

#### Measurement

Rinse the electrode tip with distilled water. Submerse the tip 3 cm  $(1\frac{1}{4}")$  in the sample and stir gently for a few seconds. For a faster response and to avoid cross-contamination of the samples, rinse the electrode tip with a few drops of the solution to be tested, before taking measurements.

# Storage Procedure

To minimize clogging and ensure a quick response time, the glass bulb and the junction should be kept moist and not allowed to dry out.

Replace the solution in the protective cap with a few drops of HI70300 or HI80300 Storage Solution or, in its absence, Filling Solution (HI7082 or HI8082 for double junction electrodes). Follow the preparation procedure before taking measurements.

Note: NEVER STORE THE ELECTRODE IN DISTILLED OR DEIONIZED WATER.

#### Periodic Maintenance

Inspect the electrode and the cable. The cable used for connection to the instrument must be intact and there must be no points of broken insulation on the cable or cracks on the electrode stem or bulb. Connectors must be perfectly clean and dry. If any scratches or cracks are present, replace the electrode. Rinse off any salt deposits with water.

For refillable electrodes: Refill the reference chamber with fresh electrolyte (HI7082 or HI8082 for double junction electrodes). Allow the electrode to stand upright for 1 hour.

Follow the Storage Procedure above.

# Cleaning Procedure

Use diagnostic messages to aid pH electrode troubleshooting. Several cleaning solutions are available:

- General Soak in Hanna HI7061 or HI8061 General Cleaning Solution for approximately ½ hour.
- Protein —Soak in Hanna HI7073 or HI8073 Protein Cleaning Solution for 15 minutes.
- Inorganic Soak in Hanna H17074 Inorganic Cleaning Solution for 15 minutes.
- Oil/grease Rinse with Hanna HI7077 or HI8077 Oil and Fat Cleaning Solution.

Note: After performing any of the cleaning procedures, rinse the electrode thoroughly with distilled water, refill the reference chamber with fresh electrolyte (not necessary for gel-filled electrodes) and soak the electrode in HI70300 or HI80300 Storage Solution for at least 1 hour before taking measurements.

# Temperature Correlation For pH Sensitive Glass

Verify the temperature range by reading the limits on electrodes cap. The pH electrode's life also depends on the temperature that is used. If constantly cycled between two temperatures, the life of the electrode is drastically reduced.

# 8. METHOD PROCEDURES 8.1. AMMONIA LOW RANGE

#### **SPECIFICATIONS**

Ranae  $0.00 \text{ to } 3.00 \text{ mg/L (as NH}_3-N)$ 

Resolution  $0.01 \, \text{mg/L}$ 

 $\pm$  0.04 mg/L  $\pm$  4% of reading at 25 °C Accuracy

LED with narrow band interference filter @ 420 nm Light Source

Method Adaptation of the ASTM Manual of Water and Environmental Technology,

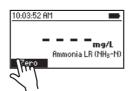
D1426 Nessler method.

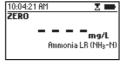
#### REQUIRED REAGENTS

| Code       | Description                 | Quantity |
|------------|-----------------------------|----------|
| H193700A-0 | Ammonia Low Range Reagent A | 4 drops  |
| HI93700B-0 | Ammonia Low Range Reagent B | 4 drops  |

#### **REAGENT SETS**

Reagents for 100 tests HI93700-01 HI93700-03 Reagents for 300 tests


For other accessories see page 97.


#### MEASUREMENT PROCEDURE

• Select the Ammonia LR method using the procedure described in the Method Selection section (see page 17).



- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid
- Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.







Remove the cuvette.

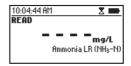


Add 4 drops of HI93700A-0 Ammonia Low Range Reagent A.
 Replace the cap and mix the solution.



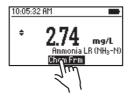
• Add 4 drops of HI93700B-0 Ammonia Low Range Reagent B. Replace the cap and mix the solution.




• Reinsert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of ammonia nitrogen (NH<sub>3</sub>-N).










- Press ▲ or ▼ to access the second level functions.
- Press the Chem Frm key to convert the result to mg/L of ammonia (NH $_3$ ) and ammonium (NH $_4$ +).







• Press  $\blacktriangle$  or  $\blacktriangledown$  to return to the measurement screen.

#### **INTERFERENCE**

Interference may be caused by:

Acetone

Alcohols

Aldehydes

Glycine

Hardness above 1 g/L

Iron

Organic chloramines

Sulfide

Various aliphatic and aromatic amines

#### 8.2. AMMONIA MEDIUM RANGE

#### **SPECIFICATIONS**

Range  $0.00 \text{ to } 10.00 \text{ mg/L} \text{ (as NH}_3-\text{N)}$ 

Resolution 0.01 mg/L

Accuracy  $\pm 0.05 \text{ mg/L} \pm 5\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 420 nm

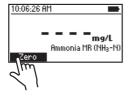
Method Adaptation of the ASTM Manual of Water and Environmental Technology,

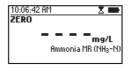
D1426, Nessler method.

#### REQUIRED REAGENTS

| Code       | Description                    | Quantity |
|------------|--------------------------------|----------|
| HI93715A-0 | Ammonia Medium Range Reagent A | 4 drops  |
| HI93715B-0 | Ammonia Medium Range Reagent B | 4 drops  |

#### REAGENT SETS


HI93715-01 Reagents for 100 tests HI93715-03 Reagents for 300 tests


For other accessories see page 97.

# MEASUREMENT PROCEDURE

- Select the Ammonia MR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.



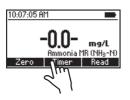




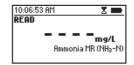




- Remove the cuvette.
- Add 4 drops of H193715A-0 Ammonia Medium Range Reagent A. Replace the cap and mix the solution.







• Reinsert the cuvette into the instrument and close the lid.




Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results to mg/L of ammonia nitrogen (NH<sub>3</sub>-N).









• Press A or  $\nabla$  to access the second level functions.

• Press the Chem Frm key to convert the result in mg/L of ammonia (NH $_3$ ) and ammonium (NH $_4$ +).







• Press  $\blacktriangle$  or  $\blacktriangledown$  to return to the measurement screen.

# **INTERFERENCES**

Interference may be caused by:

Acetone

Alcohols

Aldehydes

Glycine

Hardness above 1 g/L

Iron

Organic chloramines

Sulfide

Various aliphatic and aromatic amines

## 8.3. AMMONIA HIGH RANGE

## **SPECIFICATIONS**

Range  $0.0 \text{ to } 100.0 \text{ mg/L (as NH}_3-\text{N)}$ 

Resolution 0.1 mg/L

Accuracy  $\pm 0.5 \text{ mg/L} \pm 5\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 420 nm

Method Adaptation of the ASTM Manual of Water and Environmental Technology,

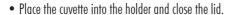
D1426, Nessler method.

## **REQUIRED REAGENTS**

| Code       | Description                  | Quantity |
|------------|------------------------------|----------|
| HI93733A-0 | Ammonia High Range Reagent A | 4 drops  |
| HI93733B-0 | Ammonia High Range Reagent B | 9 mL     |

## **REAGENT SETS**

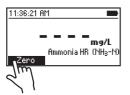
HI93733-01 Reagents for 100 tests HI93733-03 Reagents for 300 tests

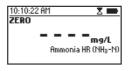

For other accessories see page 97.

# MEASUREMENT PROCEDURE

 Select the Ammonia HR method using the procedure described in the Method Selection section (see page 17).

 Add 1mL of unreacted sample to the cuvette using 1mL syringe.


 Use the pipette to fill the cuvette up to the 10 mL mark with HI93733B-O Ammonia High Range Reagent B.
 Replace the cap and mix the solution.








 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

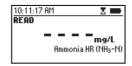


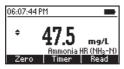




- Remove the cuvette.
- Add 4 drops of H193733A-O Ammonia High Range Reagent A.
   Replace the cap and swirl the solution.

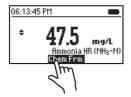



• Reinsert the cuvette into the instrument and close the lid.

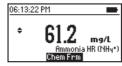



Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of ammonia nitrogen (NH<sub>2</sub>-N).








Press ▲ or ▼ to access the second level functions.

• Press the Chem Frm key to convert the result to mg/L of ammonia (NH $_3$ ) and ammonium (NH $_4$ +).







Press ▲ or ▼ to return to the measurement screen.

## **INTERFERENCES**

Interference may be caused by:

Acetone

Alcohols

Aldehydes

Glycine

Hardness above 1 g/L

Iron

Organic chloramines

Sulfide

Various aliphatic and aromatic amines

## 8.4. CHLORINE, FREE

## **SPECIFICATIONS**

Range  $0.00 \text{ to } 5.00 \text{ mg/L (as Cl}_2)$ 

Resolution 0.01 mg/L

Accuracy  $\pm 0.03$  mg/L  $\pm 3\%$  of reading at 25 °C

Light Source LED with narrow band interference filter @ 525 nm

Method Adaptation of the EPA DPD method 330.5.

#### REQUIRED REAGENTS

## POWDER:

| Code      | Description           | Quantity |
|-----------|-----------------------|----------|
| HI93701-0 | Free Chlorine Reagent | 1 packet |

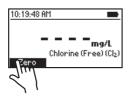
## LIQUID:

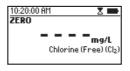
| Code       | Description             | Quantity |
|------------|-------------------------|----------|
| H193701A-F | Free Chlorine Reagent A | 3 drops  |
| HI93701B-F | Free Chlorine Reagent B | 3 drops  |

# **REAGENT SETS**

| HI93701-F  | Reagents for 300 tests (liquid) |
|------------|---------------------------------|
| HI93701-01 | Reagents for 100 tests (powder) |
| HI93701-03 | Reagents for 300 tests (powder) |

For other accessories see page 97.


#### MEASUREMENT PROCEDURE

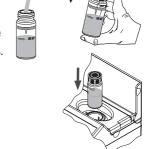

- Select the Chlorine (Free) method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.





 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.








Remove the cuvette.

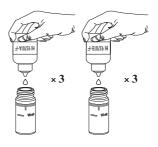
#### POWDER REAGENT PROCEDURE

- Add the content of one packet of HI93701-0 Free Chlorine Reagent. Replace the cap and shake gently for 20 seconds.
- Reinsert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or alternatively, wait for 1 minute and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of chlorine (Cl<sub>2</sub>).










#### LIQUID REAGENT PROCEDURE

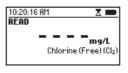
 To an empty cuvette add 3 drops of HI93701A-F Free Chlorine Reagent A and 3 drops of HI93701B-F Free Chlorine Reagent B.



Swirl gently to mix.



Add 10 mL of unreacted sample (up to the mark).
 Replace the cap and shake gently.




• Insert the cuvette into the instrument and close the lid.



Press Read to start the reading. The instrument displays the results in mg/L of chlorine (Cl<sub>2</sub>).







Note: Free and Total Chlorine have to be measured separately with fresh sample following the related procedure if both values are desired.

#### INTERFERENCES

Interference may be caused by: Bromine, Iodine, Ozone, Oxidized forms of Chromium and Manganese. In case of water with hardness greater than 500 mg/L CaCO<sub>3</sub>, shake the sample for approximately 2 minutes after adding the powder reagent.

If the water used for this procedure has an alkalinity value greater than 250 mg/L  $CaCO_3$  or acidity value greater than 150 mg/L  $CaCO_3$ , the color of the sample may develop only partially, or may rapidly fade. To resolve this, neutralize the sample with diluted HCl or NaOH.

## 8.5. CHLORINE, TOTAL

#### **SPECIFICATIONS**

Range  $0.00 \text{ to } 5.00 \text{ mg/L (as Cl}_2)$ 

Resolution 0.01 mg/L

Accuracy  $\pm 0.03$  mg/L  $\pm 3\%$  of reading at 25 °C

Light Source LED with narrow band interference filter @ 525 nm

Method Adaptation of the EPA DPD method 330.5.

## REQUIRED REAGENTS

POWDER:

CodeDescriptionQuantityH193711-0Total Chlorine Reagent1 packet

LIQUID:

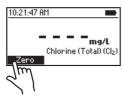
| Code       | Description              | Quantity |
|------------|--------------------------|----------|
| HI93701A-T | Total Chlorine Reagent A | 3 drops  |
| HI93701B-T | Total Chlorine Reagent B | 3 drops  |
| HI93701C-T | Total Chlorine Reagent C | 1 drop   |

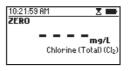
### **REAGENT SETS**

HI93701-T Reagents for 300 tests (liquid)
HI93711-01 Reagents for 100 total tests (powder)
HI93711-03 Reagents for 300 total tests (powder)


For other accessories see page 97.

## MEASUREMENT PROCEDURE


- Select the Chlorine (Total) method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.

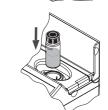



10 mL

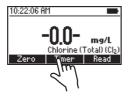


 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.









Remove the cuvette.

### POWDER REAGENT PROCEDURE

- Add 1 packet of HI93711-0 Total Chlorine Reagent. Replace the cap and shake gently for 20 seconds.
- Reinsert the cuvette into the instrument and close the lid.

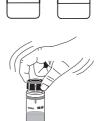



• Press **Timer** and the display will show the countdown prior to the measurement or, alternatively, wait for 2 minutes and 30 seconds and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **chlorine** (Cl<sub>2</sub>).








HI 93701B-T





 To an empty cuvette add 3 drops of HI93701A-T Total Chlorine Reagent A, 3 drops of HI93701B-T Total Chlorine Reagent B, and 1 drop of HI93701C-T Total Chlorine Reagent C. Swirl gently to mix.

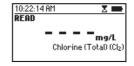




HI 93701C-T

Add 10 mL of unreacted sample (up to the mark).
 Replace the cap and shake gently.




• Insert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 2 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of chlorine (Cl<sub>2</sub>).









Note: Free and Total Chlorine have to be measured separately with fresh unreacted samples following the related procedure if both values are desired.

#### INTERFERENCES

Interference may be caused by: Bromine, Iodine, Ozone, Oxidized forms of Chromium and Manganese. In case of water with hardness greater than 500 mg/L  $CaCO_3$  shake the sample for approximately 2 minutes after adding the powder reagent.

If the water used for this procedure has an alkalinity value greater than 250 mg/L  $CaCO_3$  or acidity value greater than 150 mg/L  $CaCO_3$ , the color of the sample may develop only partially, or may rapidly fade. To resolve this, neutralize the sample with diluted HCl or NaOH.

# 8.6. CHROMIUM (VI) LOW RANGE

## **SPECIFICATIONS**

0 to 300  $\mu$ g/L (as Cr (VI)) Range

Resolution  $1 \mu g/L$ 

 $\pm 10 \,\mu$ g/L  $\pm 4\%$  of reading at 25 °C Accuracy

LED with narrow band interference filter @ 525 nm Light Source

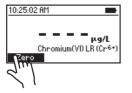
Method Adaptation of the ASTM Manual of Water and Environmental Technology.

D1687 Diphenylcarbohydrazide method.

## REQUIRED REAGENTS

Code Description Quantity HI93749-0 Chromium (VI) Low Range Reagent 1 packet

## **REAGENT SETS**


Reagents for 100 tests HI93749-01 Reagents for 300 tests HI93749-03

For other accessories see page 97.

## MEASUREMENT PROCEDURE

- Select the Chromium (VI) LR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.



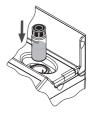






- Remove the cuvette.
- Add one packet of HI93749-0 Chromium(VI) Low Range Reagent. Replace the cap and shake vigorously for about 10 seconds.

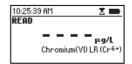






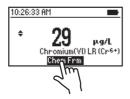

10 ml




• Reinsert the cuvette into the instrument and close the lid.



• Press **Timer** and the display will show the countdown prior to the measurement or, alternatively, wait for 6 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays concentration in  $\mu$ g/L of chromium (Cr<sup>6+</sup>).










- Press A or T to access the second level functions.
- Press the Chem Frm key to convert the result to  $\mu$ g/L of chromate (Cr $_{4}^{2^{-}}$ ) and dichromate (Cr $_{2}^{0}$  $_{7}^{2^{-}}$ ).







• Press  $\blacktriangle$  or  $\blacktriangledown$  to return to the measurement screen.

## **INTERFERENCES**

Interference may be caused by: Vanadium above 1 ppm. However, waiting 10 minutes before reading removes the interference. Iron above 1 ppm. Mercurous and mercuric ions cause slight inhibition of the reaction.

# 8.7. CHROMIUM (VI) HIGH RANGE

## **SPECIFICATIONS**

0 to 1000  $\mu$ g/L (as Cr(VI)) Range

Resolution  $1 \mu g/L$ 

 $\pm 5 \mu g/L \pm 4\%$  of reading at 25 °C Accuracy

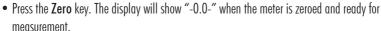
LED with narrow band interference filter @ 525 nm Light Source

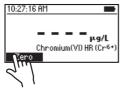
Method Adaptation of the ASTM Manual of Water and Environmental Technology.

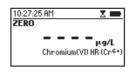
D1687. Diphenylcarbohydrazide method.

#### REQUIRED REAGENTS

Code Description Quantity HI93723-0 Chromium(VI) High Range Reagent 1 packet


## **REAGENT SETS**


Reagents for 100 tests HI93723-01 Reagents for 300 tests HI93723-03


For other accessories see page 97.

## MEASUREMENT PROCEDURE

- Select the Chromium (VI) HR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.

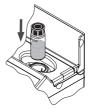








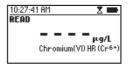
- Remove the cuvette.
- Add one packet of H193723-0 Chromium(VI) High Range Reagent. Replace the cap and shake vigorously for about 10 seconds




10 mL



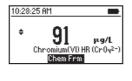




Reinsert the cuvette into the instrument and close the lid.



• Press **Timer** and the display will show the countdown prior to the measurement or, alternatively, wait for 6 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays concentration in  $\mu$ g/L of chromium (Cr<sup>6+</sup>).










- Press ▲ or ▼ to access the second level functions.
- Press the Chem Frm key to convert the result to  $\mu$ g/L of chromate (Cr $_{4}^{2^{-}}$ ) and dichromate (Cr $_{2}^{0}$  $_{7}^{2^{-}}$ ).







ullet Press lacktriangle or lacktriangle to return to the measurement screen.

## **INTERFERENCES**

Interference may be caused by:

Vanadium above 1 ppm. However, waiting 10 minutes before reading removes the interference. Iron above 1 ppm.

Mercurous and mercuric ions cause slight inhibition of the reaction.

## 8.8. COLOR OF WATER

## **SPECIFICATIONS**

Range 0 to 500 PCU (Platinum Cobalt Units)

Resolution 1 PCU

Accuracy  $\pm 10 \text{ PCU} \pm 5\% \text{ of reading at } 25 \text{ °C}$ 

Light Source LED with narrow band interference filter @ 420 nm

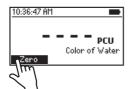
Method Adaptation of the Standard Methods for the Examination of Water and

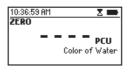
Wastewater, 18th edition, Colorimetric Platinum Cobalt method.

#### REQUIRED ACCESSORIES

 $0.45 \,\mu\text{m}$  membrane for true color measurement. For other accessories see page 97.

#### MEASUREMENT PROCEDURE

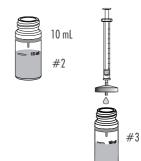

- Select the Color of Water method using the procedure described in the Method Selection section (see page 17).
- Fill the first cuvette (#1) up to the mark with deionized water and replace the cap.



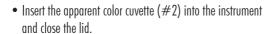

• Place the blank (#1) into the holder and close the lid.



 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.





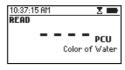



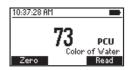


· Remove the cuvette

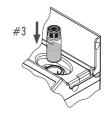
• Fill the second cuvette (#2) up to the mark with unfiltered sample and replace the cap. This is the apparent color.



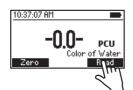

• Filter 10 mL of sample through a filter with a 0.45  $\mu$ m membrane into the third cuvette (#3), up to the 10 mL mark and replace the cap. This is the true color.



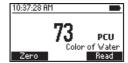




 Press Read to start the reading. The meter displays the value of apparent color in Platinum Cobalt Units (PCU).









 Remove the apparent color cuvette(#2) from the instrument, insert the true color cuvette (#3) into the instrument and close the lid.



 Press Read to start the reading. The meter displays the true color in Platinum Cobalt Units (PCU).







### 8.9. COPPER LOW RANGE

#### **SPECIFICATIONS**

Range 0.000 to 1.500 mg/L (as Cu)

Resolution 0.001 mg/L

Accuracy  $\pm 0.010 \text{ mg/L} \pm 5\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 575 nm

Method Adaptation of the EPA method.

## REQUIRED REAGENTS

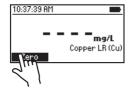
CodeDescriptionQuantityH195747-0Copper Low Range Reagent1 packet

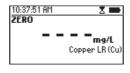
#### **REAGENT SETS**

HI95747-01 Reagents for 100 tests HI95747-03 Reagents for 300 tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE


- Select the Copper LR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.




• Place the cuvette into the holder and close the lid.



 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

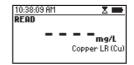






- Remove the cuvette.
- Add one packet of HI95747-0 Copper Low Range Reagent.
   Replace the cap and shake gently for about 15 seconds.




• Reinsert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 45 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of copper (Cu).









#### INTERFERENCES

Interference may be caused by:

Silver, Cyanide.

For samples overcoming buffering capacity of reagent (around pH 6.8), pH should be adjusted between 6 and 8.

# 8.10. COPPER HIGH RANGE

## **SPECIFICATIONS**

Range 0.00 to 5.00 mg/L (as Cu)

Resolution 0.01 mg/L

Accuracy  $\pm 0.02 \text{ mg/L} \pm 4\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 575 nm

Method Adaptation of the EPA method.

#### REQUIRED REAGENTS

CodeDescriptionQuantityH193702-0Copper High Range Reagent1 packet

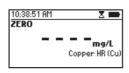
### **REAGENT SETS**

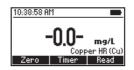
HI93702-01 Reagents for 100 tests HI93702-03 Reagents for 300 tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE

- Select the Copper HR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.

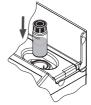




• Place the cuvette into the holder and close the lid.



 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

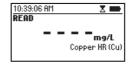







- Remove the cuvette.
- Add one packet of HI93702-0 Copper High Range Reagent.
   Replace the cap and shake gently for about 15 seconds.




Reinsert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 45 seconds and press Read. When the timer ends the meter will perform the reading.
 The instrument displays the results in mg/L of copper (Cu).









#### **INTERFERENCES**

Interference may be caused by:

Silver, Cyanide.

For samples overcoming buffering capacity of reagent (around pH 6.8), pH should be adjusted between 6 and 8.

## 8.11. CYANURIC ACID

## **SPECIFICATIONS**

Range 0 to 80 mg/L (as CYA)

Resolution 1 mg/L

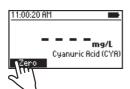
Accuracy  $\pm 1 \text{ mg/L} \pm 15\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

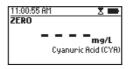
Light Source LED with narrow band interference filter @ 525 nm

Method Adaptation of the turbidimetric method.

## REQUIRED REAGENTS

| Code      | Description           | Quantity |
|-----------|-----------------------|----------|
| HI93722-0 | Cyanuric Acid Reagent | 1 packet |


#### **REAGENT SETS**


HI93722-01 Reagents for 100 tests HI93722-03 Reagents for 300 tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE

- Select the Cyanuric Acid method using the procedure described in the Method Selection section (see page 17).
- Fill the first cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- # 1 10 mL # 1
- Place the cuvette into the holder and close the lid.
- Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.







• Fill a beaker with 25 mL sample (up to the mark).

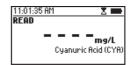


 Add one packet of H193722-0 Cyanuric Acid Reagent and mix to dissolve.



 Fill a second cuvette with 10 mL of the reacted sample, up to the mark, and replace the cap.




• Reinsert the cuvette into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 45 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the concentration in mg/L of cyanuric acid.









## 8.12. MOLYBDENUM

## **SPECIFICATIONS**

Range  $0.0 \text{ to } 40.0 \text{ mg/L (as } \text{Mo}^{6+})$ 

Resolution 0.1 mg/L

Accuracy  $\pm 0.3 \text{ mg/L} \pm 5\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

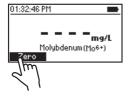
Light Source LED with narrow band interference filter @ 420 nm Method Adaptation of the mercaptoacetic acid method.

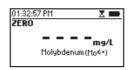
## REQUIRED REAGENTS

| Code       | Description          | Quantity |
|------------|----------------------|----------|
| HI93730A-0 | Molybdenum Reagent A | 1 packet |
| HI93730B-0 | Molybdenum Reagent B | 1 packet |
| HI93730C-0 | Molybdenum Reagent C | 1 packet |

## **REAGENT SETS**

HI93730-01 Reagents for 100 tests HI93730-03 Reagents for 300 tests


For other accessories see page 97.


## MEASUREMENT PROCEDURE

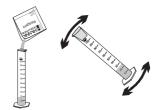
 Select the Molybdenum method using the procedure described in the Method Selection section (see page 17).

- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.

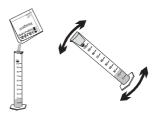









10 mL


• Fill one graduated mixing cylinder up to the 25 mL mark with the sample.



 Add one packet of H193730A-0 Molybdenum Reagent A, close the cylinder and invert several times until completely dissolved.



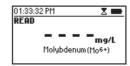
 Add one packet of HI93730B-0 Molybdenum Reagent B to the cylinder, close and invert several times until completely dissolved.

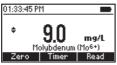


• Add one packet of HI93730C-0 Molybdenum Reagent C to the cylinder, close and shake vigorously.

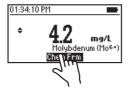


• Fill an empty cuvette with 10 mL of reacted sample (up to the mark) and replace the cap.

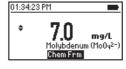




• Insert the cuvette into the instrument and close the lid.

Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 5 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of molybdenum (Mo<sup>6+</sup>).








- Press ▲ or ▼ to access the second level functions.
- Press the Chem Frm key to convert the result to mg/L of molybdate (MoO<sub>4</sub><sup>2-</sup>) and sodium molybdate (Na<sub>2</sub>MoO<sub>4</sub>).







ullet Press lacktriangle or lacktriangle to return to the measurement screen.

## **INTERFERENCES**

Interference may be caused by: Aluminum above 50 mg/L

Chromium above 1000 mg/L

Copper above 10 mg/L

Iron above 50 mg/L

Nickel above 50 mg/L

Nitrite, as NO<sub>2</sub>

Sulfate above 200 mg/L

Highly buffered samples or with extreme pH may exceed the buffering capacity of the reagents

## 8.13. NICKEL LOW RANGE

## **SPECIFICATIONS**

Range 0.000 to 1.000 mg/L (as Ni)

Resolution 0.001 mg/L

Accuracy  $\pm 0.010 \text{ mg/L} \pm 7\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 575 nm

Method Adaptation of the PAN method.

#### REQUIRED REAGENTS

| Code       | Description                         | Quantity  |
|------------|-------------------------------------|-----------|
| HI93740A-0 | Nickel Low Range Reagent A          | 2 packets |
| HI93740B-0 | Nickel Low Range Reagent B          | 2 mL      |
| HI93740C-0 | Nickel Low Range Reagent C          | 2 packets |
| HI93703-51 | Dispersing Agent (optional reagent) | 4-6 drops |

#### **REAGENT SETS**

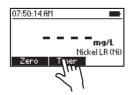
HI93740-01 Reagents for 50 tests
HI93740-03 Reagents for 150 tests

For other accessories see page 97.

## MEASUREMENT PROCEDURE

 Select the Nickel LR method using the procedure described in the Method Selection section (see page 17).

Note: For best results samples should be between 20 and 24 °C.


- Fill one graduated beaker with 25 mL of deionized water (blank) and another one with 25 mL of sample.
- Add one packet of HI93740A-O Nickel Low Range Reagent A to each beaker. Cap and swirl gently until the reagent is dissolved.

Note: If sample contains iron ( $Fe^{3+}$ ), it is important that all powder is dissolved before continuing.

 Add 1 mL of HI93740B-0 Nickel Low Range Reagent B to each beaker, and swirl to mix.



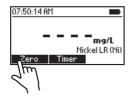
• Press **Timer** and the display will show a countdown or alternatively, wait for 15 minutes.

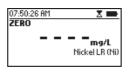




 Add one packet of HI93740C-0 Nickel Low Range Reagent C to each beaker, cap and swirl to mix until completely dissolved.




 $\bullet$  Fill one cuvette (#1) with 10 mL of the blank (up to the mark).




• Place the cuvette into the holder and close the lid.

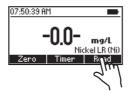


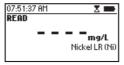
 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.








• Fill a second cuvette (#2) with 10 mL of the reacted sample (up to the mark).




• Insert the second cuvette into the instrument and close the lid.



• Press Read to start the reading. The instrument displays the results in mg/L of nickel (Ni).







Note: A temperature above 30 °C may cause turbidity. In this case add 2-3 drops of HI93703-51 Dispersing Agent to each cuvette and swirl until turbidity is removed before zeroing the meter and reading the sample.

## INTERFERENCES

Interference may be caused by:

Co<sup>2+</sup> must not be present

Fe<sup>2+</sup> must not be present

 $Al^{3+}$  above 32 mg/L

 $Ca^{2+}$  above 1000 mg/L (as  $CaCO_{2}$ )

Cd2+ above 20 ma/L

Cl above 8000 mg/L

Cr3+ above 20 mg/L

Cr6+ above 40 mg/L

 $Cu^{2+}$  above 15 mg/L

F above 20 mg/L

Fe<sup>3+</sup> above 10 mg/L K+ above 500 mg/L

Mg<sup>2+</sup> above 400 mg/L

 $Mn^{2+}$  above 25 mg/L

Mo<sup>6+</sup> above 60 mg/L

Na+ above 5000 mg/L

Pb2+ above 20 mg/L

Zn2+ above 30 ma/L

## 8.14. NICKEL HIGH RANGE

## **SPECIFICATIONS**

Range 0.00 to 7.00 g/L (as Ni)

Resolution 0.01 g/L

Accuracy  $\pm 0.07$ g/L  $\pm 4\%$  of reading at 25 °C

Light Source LED with narrow band interference filter @ 575 nm

Method Adaptation of the photometric method.

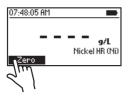
## REQUIRED REAGENTS

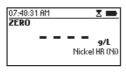
CodeDescriptionQuantityH193726-0Nickel High Range Reagent1 packet

## **REAGENT SETS**

HI93726-01 Reagents for 100 tests HI93726-03 Reagents for 300 tests

For other accessories see page 97.


## MEASUREMENT PROCEDURE

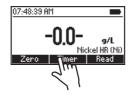

- Select the Mickel HR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.



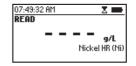
• Place the cuvette into the holder and close the lid.











Remove the cuvette and add one packet of HI93726-0
Nickel High Range Reagent. Replace the cap and shake
gently until completely dissolved.



- Reinsert the cuvette into the instrument and close the lid.
- Press **Timer** and the display will show the countdown prior to the measurement or, alternatively, wait for 1 minute and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the concentration in **g/L** of **nickel (Ni)**.









## **INTERFERENCES**

Interference may be caused by copper.

## **8.15. NITRATE**

## **SPECIFICATIONS**

Range 0.0 to 30.0 mg/L (as  $NO_3^--N$ )

Resolution 0.1 mg/L

Accuracy  $\pm 0.5 \text{ mg/L} \pm 10\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 525 nm Method Adaptation of the cadmium reduction method.

## REQUIRED REAGENTS

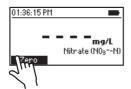
CodeDescriptionQuantityH193728-0Nitrate Reagent1 packet

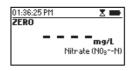
### **REAGENT SETS**

HI93728-01 Reagents for 100 tests
HI93728-03 Reagents for 300 tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE


- Select the Nitrate method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of sample, (up to the mark), and replace the cap.




Place the cuvette into the holder and close the lid.

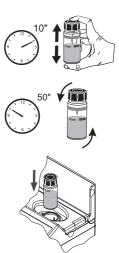


 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.





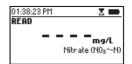





• Remove the cuvette and add one packet of H193728-0 Nitrate Reagent.

 Replace the cap and shake vigorously up and down for exactly 10 seconds. Continue to mix by inverting the cuvette gently for 50 seconds, while taking care not to induce air bubbles. Powder will not completely dissolve. Time and method of shaking could sensitively affect the measurement.

Note: The method is technique-sensitive. See procedure on page 19 Cuvette Preparation for proper mixing technique.

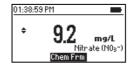





Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 4 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of nitrate-nitrogen (NO<sub>2</sub>-N).










Press ▲ or ▼ to access the second level functions.

• Press the Chem Frm key to convert the result to mg/L of nitrate (NO<sub>3</sub><sup>-</sup>).





• Press ▲ or ▼ to return to the measurement screen.

## **INTERFERENCES**

Interference may be caused by:

Ammonia and amines, as urea and primary aliphatic amines

Chloride above 100 ppm

Chlorine above 2 ppm

Copper

Iron(III)

Strong oxidizing and reducing substances

Sulfide must be absent

## 8.16. NITRITE HIGH RANGE

#### **SPECIFICATIONS**

Range 0 to 150 mg/L (as  $NO_2$ )

Resolution 1 mg/L

Accuracy  $\pm 4 \text{ mg/L} \pm 4\% \text{ of reading at 25 °C}$ 

Light Source LED with narrow band interference filter @ 575 nm

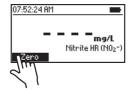
Method Adaptation of the Ferrous Sulfate method.

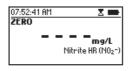
## REQUIRED REAGENTS

CodeDescriptionQuantityH193708-0Nitrite High Range Reagent1 packet

### **REAGENT SETS**

HI93708-01 Reagents for 100 tests HI93708-03 Reagents for 300 tests


For other accessories see page 97.


#### MEASUREMENT PROCEDURE

- Select the Nitrite HR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette up to the mark with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.



 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

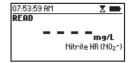


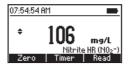




· Remove the cuvette.

Add one packet of HI93708-0 Nitrite High Range Reagent.
 Replace the cap and shake gently until completely dissolved.





• Reinsert the cuvette into the instrument and close the lid.

Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 10 minutes and press Read. When the timer ends the meter will perform the reading.
 The instrument displays concentration in mg/L of nitrite (NO<sub>2</sub>-).









- Press ▲ or ▼ to access the second level functions.
- Press the Chem Frm key to convert the result to mg/L of nitrite-nitrogen (NO<sub>2</sub><sup>-</sup>-N) and sodium nitrite (NaNO<sub>2</sub>).







ullet Press lack a or lack v to return to the measurement screen.

## 8.17. OXYGEN, DISSOLVED

#### SPECIFICATIONS

Range  $0.0 \text{ to } 10.0 \text{ mg/L (as } O_2)$ 

Resolution 0.1 mg/L

Accuracy  $\pm 0.4 \text{ mg/L} \pm 3\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 420 nm

Method Adaptation of the Standard Methods for the Examination of Water and

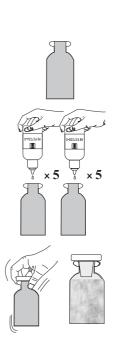
Wastewater, 18th edition, Azide modified Winkler method.

#### REQUIRED REAGENTS

| Code       | Description                | Quantity |
|------------|----------------------------|----------|
| HI93732A-0 | Dissolved Oxygen Reagent A | 5 drops  |
| HI93732B-0 | Dissolved Oxygen Reagent B | 5 drops  |
| HI93732C-0 | Dissolved Oxygen Reagent C | 10 drops |

## **REAGENT SET**

HI93732-01 Reagents for 100 tests HI93732-03 Reagents for 300 tests


For other accessories see page 97.

### MEASUREMENT PROCEDURE

- Select the Oxygen (dissolved) method using the procedure described in the Method Selection section (see page 17).
- Fill one 60 mL glass bottle completely with the unreacted sample.
- Replace the cap and ensure that a small part of the sample spills over.
- Remove the cap and add 5 drops of HI93732A-0 and 5 drops of HI93732B-0.
- Add more sample, to fill the bottle completely. Replace the cap and ensure that a part of the sample spills over.

Note: This ensures no air bubbles have been trapped inside the bottle. Trapped air bubbles could alter readings.

• Invert the bottle several times until the sample turns orangeyellow and a flocculating agent appears.

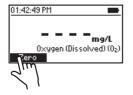


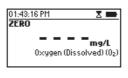
- Let the sample stand for approximately 2 minutes to allow flocculating agent to settle.
- When the upper half of the bottle is clear, add 10 drops of HI93732C-O Dissolved Oxygen Reagent C.



 Replace the cap and invert the bottle until the settled flocculating agent dissolves completely. The sample is ready for measurement when it is yellow and completely clear.




 Fill the first cuvette (#1) with 10 mL of the unreacted sample (up to the mark), and replace the cap.




• Place the cuvette into the holder and close the lid.

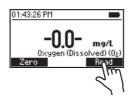


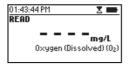
 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.








- · Remove the cuvette.
- Fill second cuvette (#2) with 10 mL of the reacted sample (up to the mark) and replace the cap.




• Insert the cuvette into the holder and close the lid.



• Press Read to start the reading. The instrument will display the results in mg/L of oxygen  $(0_2)$ .







## **INTERFERENCES**

Interferences may be caused by reducing and oxidizing materials.

## 8.18. pH

#### **SPECIFICATIONS**

Range 6.5 to 8.5 pH Resolution 0.1 pH

Accuracy  $\pm 0.1$  pH at 25 °C

Light Source LED with narrow band interference filter @ 525 nm

Method Adaptation of the Phenol Red method.

#### REQUIRED REAGENTS

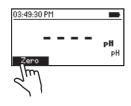
CodeDescriptionQuantityHI 93710-0pH Reagent5 drops

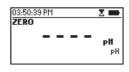
#### **REAGENT SETS**

HI 93710-01 Reagents for 100 pH tests
HI 93710-03 Reagents for 300 pH tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE


- Select the pH method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.




Place the cuvette into the holder and close the lid.

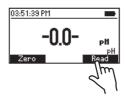


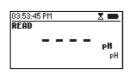
 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

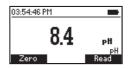







 Remove the cuvette and add 5 drops of HI93710-0 pH Reagent Indicator. Replace the cap and mix the solution.





• Reinsert the cuvette into the instrument and close the lid.



• Press the Read key to start the reading. The instrument displays the result in pH.







#### 8.19. PHOSPHATE LOW RANGE

#### **SPECIFICATIONS**

 $0.00 \text{ to } 2.50 \text{ mg/L (as PO}_3^{-1})$ Range

Resolution  $0.01 \, \text{mg/L}$ 

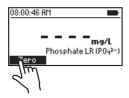
 $\pm$  0.04 mg/L  $\pm$  4% of reading at 25 °C Accuracy

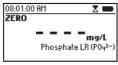
Light Source LED with narrow band interference filter @ 610 nm

Method Adaptation of the Ascorbic Acid method.

#### REQUIRED REAGENTS

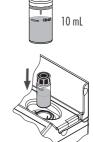
Code Description Quantity HI93713-0 Phosphate Low Range Reagent 1 packet


#### **REAGENT SETS**


HI93713-01 Reagents for 100 tests HI93713-03 Reggents for 300 tests


For other accessories see page 97.

#### MEASUREMENT PROCEDURE


- Select the Phosphate LR method using the procedure described in the Method Selection section (see page 17).
- Rinse, cap and shake the cuvette several times with unreacted sample.
- Fill the cuvette with 10 mL of sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.
- Press the **Zero** key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.





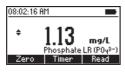


• Remove the cuvette and add the content of one packet of H193713-0 Phosphate Low Range Reagent. Replace the cap and shake gently (for about 2 minutes) until the powder is completely dissolved.

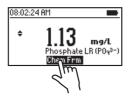




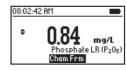

Reinsert the cuvette into the instrument and close the lid.




Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 3 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays concentration in mg/L of phosphate (PO<sub>4</sub>3<sup>-</sup>).








- Press ▲ or ▼ to access the second level functions.
- Press the Chem Frm key to convert the result to mg/L of phosphorus (P) and phosphorus pentoxide (P<sub>2</sub>O<sub>5</sub>).







• Press  $\blacktriangle$  or  $\blacktriangledown$  to return to the measurement screen.

#### **INTERFERENCES**

Interference may be caused by:

Iron above 50 mg/L

Silica above 50 mg/L

Silicate above 10 mg/L

Copper above 10 mg/L

Hydrogen sulfide, arsenate, turbid sample and highly buffered samples also interfere.

#### 8.20. PHOSPHATE HIGH RANGE

#### **SPECIFICATIONS**

Range  $0.0 \text{ to } 30.0 \text{ mg/L (as PO}_4^{3-})$ 

Resolution 0.1 mg/L

Accuracy  $\pm 1.0 \text{ mg/L} \pm 4\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 525 nm

Method Adaptation of the Standard Methods for the Examination of Water and

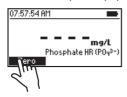
Wastewater, 18th edition, Amino Acid method.

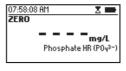
#### REQUIRED REAGENTS

| Code       | Description                    | Quantity |
|------------|--------------------------------|----------|
| HI93717A-0 | Phosphate High Range Reagent A | 10 drops |
| HI93717B-0 | Phosphate High Range Reagent B | 1 packet |

#### **REAGENT SETS**

HI93717-01 Reagents for 100 tests HI93717-03 Reagents for 300 tests


For other accessories see page 97.


#### MEASUREMENT PROCEDURE

- Select the Phosphate HR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark) and replace the cap.
- Place the cuvette into the holder and close the lid.



• Press the **Zero** key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

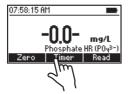




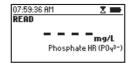


• Add 10 drops of HI93717A-O Phosphate High Range Reagent A.



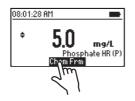

 Add one packet of HI93717B-O Phosphate HR Reagent B to the cuvette. Replace the cap and shake gently until completely dissolved.

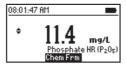


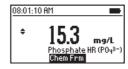

• Reinsert the cuvette into the instrument and close the lid.



• Press **Timer** and the display will show the countdown prior to the measurement or, alternatively, wait for 5 minutes and press **Read**. When the timer ends the meter will perform the reading. The instrument displays the results in **mg/L** of **phosphate** ( $PO_A^{3-}$ ).






- ullet Press lacktriangle or lacktriangle to access the second level functions.
- Press the Chem Frm key to convert the result to mg/L of phosphorus (P) and phosphorus pentoxide (P<sub>2</sub>O<sub>4</sub>).







• Press  $\blacktriangle$  or  $\blacktriangledown$  to return to the measurement screen.

#### **INTERFERENCES**

Sulfide
Chloride above 150000 mg/L
Calcium above 10000 mg/L as CaCO<sub>3</sub>
Magnesium above 40000 mg/L as CaCO<sub>3</sub>
Ferrous iron above 100 mg/L

#### 8.21. SILICA LOW RANGE

#### **SPECIFICATIONS**

Range  $0.00 \text{ to } 2.00 \text{ mg/L (as SiO}_2)$ 

Resolution 0.01 mg/L

Accuracy  $\pm 0.03$  mg/L  $\pm 3\%$  of reading at 25 °C

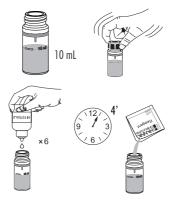
Light Source LED with narrow band interference filter @ 610 nm

Method Adaptation of the ASTM Manual of Water and Environmental Technology,

D859, Heteropoly Molybdenum Blue method.

#### REQUIRED REAGENTS

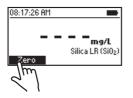
| Code       | Description                | Quantity |
|------------|----------------------------|----------|
| H193705A-0 | Silica Low Range Reagent A | 6 drops  |
| HI93705B-0 | Silica Low Range Reagent B | 1 packet |
| HI93705C-0 | Silica Low Range Reagent C | 1 packet |

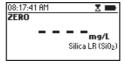

#### REAGENT SETS

HI93705-01 Reagents for 100 tests HI93705-03 Reagents for 300 tests

For other accessories see page 97.

#### MEASUREMENT PROCEDURE


- Select the Silica LR method using the procedure described in the Method Selection section (see page 17).
- Fill the cuvette with 10 mL of unreacted sample (up to the mark).
- Add 6 drops of HI93705A-0 Silica Low Range Reagent A. Replace the cap and swirl the solution.
- Press Timer and the display will show the countdown prior to adding HI93705B-0 Silica Low Range Reagent B, or alternatively wait 4 minutes.
- Add one packet of HI93705B-O Silica Low Range Reagent B and shake until it is completely dissolved.
- Press Continue and the display will show the countdown, or alternatively wait 1 minute.

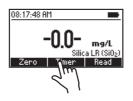



• Place the cuvette into the holder and close the lid.

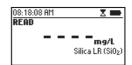


 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.









- Remove the cuvette.
- Add one packet of HI93705C-O Silica Low Range Reagent C and shake until it is completely dissolved.



- Reinsert the cuvette into the instrument and close the lid.
- Press Timer and the display will show the countdown prior to the measurement, or alternatively, wait 3 minutes and press Read. When the timer ends the meter will perform the reading. The instrument displays result in mg/L of silica (SiO<sub>2</sub>).









Press ▲ or ▼ to access the second level functions.

• Press the Chem Frm key to convert the result to mg/L of silicon (Si).





ullet Press lacktriangle or lacktriangle to return to the measurement screen.

#### **INTERFERENCES**

Interference may be caused by:

Phosphate above 60 mg/L (causes a 2% reduction in reading)

Phosphate above 75 mg/L (causes an 11% reduction in reading)

Sulfide and high concentration of iron

Eliminate color and turbidity interferences by zeroing the meter with the original water sample.

#### **8.22. SILVER**

#### **SPECIFICATIONS**

Range 0.000 to 1.000 mg/L (as Ag)

Resolution 0.001 mg/L

Accuracy  $\pm 0.020 \text{ mg/L} \pm 5\% \text{ of reading at } 25 \,^{\circ}\text{C}$ 

Light Source LED with narrow band interference filter @ 575 nm.

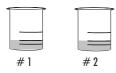
Method Adaptation of the PAN method.

#### REQUIRED REAGENTS

| Code       | Description      | Quantity |
|------------|------------------|----------|
| HI93737A-0 | Silver Reagent A | 1 mL     |
| HI93737B-0 | Silver Reagent B | 1 mL     |
| HI93737C-0 | Silver Reagent C | 2 mL     |
| HI93737D-0 | Silver Reagent D | 2 mL     |
| HI93703-51 | Dispersing Agent | 6 drops  |

#### **REAGENT SETS**

HI93737-01 Reagents for 50 tests HI93737-03 Reagents for 150 tests


For other accessories see page 97.

#### MEASUREMENT PROCEDURE

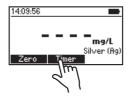
• Select the Silver method using the procedure described in the Method Selection section (see page 17).

*Note:* For best results perform your tests between 20-24 °C.

• Fill two graduated beakers with 25 mL of sample.



 Add 1 mL of HI93737A-0 Silver Reagent A to beaker #1 (the blank) and swirl gently to mix.




84

• Add 1mL of HI93737B-0 Silver Reagent B to beaker #2 (the sample) and swirl gently to mix.

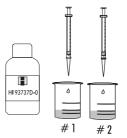


 Press Timer and the display will show the countdown prior to adding H193737C-0 Silver Reagent C or alternatively, wait for 2 minutes.





 Add 1 mL of HI93737C-0 Silver Reagent C to each beaker and swirl.




 Press Continue and the display will show the countdown prior to adding H193737D-0 Silver Reagent D, or alternatively wait for 2 minutes.

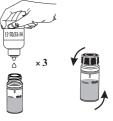




 Add 1 mL of HI93737D-0 Silver Reagent D to each beaker and swirl.



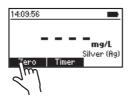
• Press Continue and the display will show the countdown or alternatively wait for 2 minutes.






• Fill cuvette (#1) up with 10 mL of the blank (up to the mark).



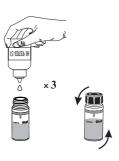

 Add 3 drops of HI93703-51 Dispersing Agent, replace the cap and invert gently for 10 seconds.



• Place the cuvette into the holder and close the lid.



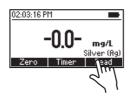
 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.

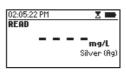





• Fill a second cuvette (#2) up with 10 mL of the reacted sample (up to the mark).




10 mL #2  Add 3 drops of HI93703-51 Dispersing Agent, replace the cap and invert gently for 10 seconds.




• Insert the second cuvette (#2) into the instrument.



• Press Read to start the reading. The instrument displays the results in mg/L of silver (Ag).







#### **INTERFERENCES**

Interference may be caused by:

 $Al^{3+}$  above 30 mg/L

 $Ca^{2+}$  above 1000 mg/L (as  $CaCO_2$ )

Cd2+ above 20 ma/L

Cl above 8000 mg/L

Co<sup>2+</sup> above 1.5 mg/L

Cr3+ above 20 mg/L

Cr6+ above 40 mg/L

 $Cu^{2+}$  above 15 mg/L

F above 20 mg/L

Fe<sup>2+</sup> above 1.5 mg/L

 $Fe_3^+$  above 10 mg/L

K<sup>+</sup> above 500 mg/L

Mn<sup>2+</sup> above 25 mg/L

Mg<sup>2+</sup> above 1000 mg/L (as CaCO<sub>2</sub>)

Na+ above 5000 mg/L

 $Ni^{2+}$  above 1.5 mg/L

Pb2+ above 20 mg/L

 $Zn^{2+}$  above 30 mg/L

## 8.23. ZINC

#### **SPECIFICATIONS**

Range 0.00 to 3.00 mg/L (as Zn)

Resolution 0.01 mg/L

Accuracy  $\pm 0.03$  mg/L  $\pm 3\%$  of reading at 25 °C

Light Source LED with narrow band interference filter @ 575 nm

Method Adaptation of the Standard Methods for the Examination of Water and

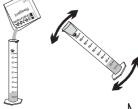
Wastewater, 18th edition, Zincon method.

#### REQUIRED REAGENT

| Code       | Description    | Quantity |
|------------|----------------|----------|
| HI93731A-0 | Zinc Reagent A | 1 packet |
| HI93731B-0 | Zinc Reagent B | 0.5 mL   |

#### **REAGENT SETS**

HI93731-01 Reagents for 100 tests
HI93731-03 Reagents for 300 tests


For other accessories see page 97.

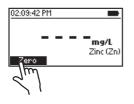
#### MEASUREMENT PROCEDURE

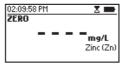
 Select the Zinc method using the procedure described in the Method Selection section (see page 17).

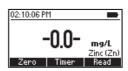
• Fill the graduated glass vial up to the 20 mL mark with the sample.

 Add one packet of HI93731A-0 Zinc Reagent A, close the cylinder, and invert several times to mix until completely dissolved.



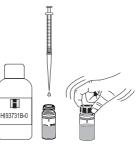

• Fill a cuvette with 10 mL of the reacted sample (up to the mark) and close the cap.





• Place the cuvette into the holder and close the lid.



 Press the Zero key. The display will show "-0.0-" when the meter is zeroed and ready for measurement.



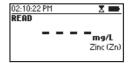





 Add 0.5 mL of HI93731B-0 Zinc Reagent B to the cuvette, close the cuvette with the supplied HDPE plastic stopper to prevent contamination.

• Replace the cap and mix for 15 seconds.




• Insert the sample into the instrument and close the lid.



 Press Timer and the display will show the countdown prior to the measurement or, alternatively, wait for 3 minutes and 30 seconds and press Read. When the timer ends the meter will perform the reading. The instrument displays the results in mg/L of zinc (Zn).









## **INTERFERENCES**

Interference may be caused by: Aluminum above 6 mg/L Iron above 7 mg/L Cadmium above 0.5 mg/L Manganese above 5 mg/L Copper above 5 mg/L Nickel above 5 mg/L

#### 9. WARNINGS & ERRORS

The instrument shows clear warning messages when erroneous conditions appear and when measured values are outside the expected range. The information below provides an explanation of the errors and warnings, and recommended action to be taken.



Explanation: There is an excess amount of ambient light reaching the detector.

Recommended action: Make sure the lid is closed before performing any measurements. If the issue persists, please contact Hanna Instruments technical support.



Explanation: The sample and the Zero cuvettes are inverted.

Recommended action: Swap the cuvettes and repeat the measurement.



Explanation: There is either too much light or the instrument can not adjust the light level.

**Recommended action:** Please check the preparation of the Zero cuvette and that the sample does not contain any debris.



*Explanation:* The meter is either overheating or its temperature has dropped too low to operate within published accuracy specifications.

**Recommended action:** Allow the meter to reach normal environmental temperature before performing any measurements.



*Explanation:* Meter temperature has changed significantly since the zero measurement has been performed.

Recommended action: The zero measurement must be performed again.



Explanation: The measured value is outside the limits of the method. Recommended action: If possible, change the method range. Verify that the sample does not contain any debris. Check the sample preparation and the measurement preparation.



Explanation: The measured value cannot be calculated.

*Recommended action:* Please check sample preparation and measurement procedure.



Explanation: Stored results of the CAL Check measurements have been lost.

Recommended action: Please redo the CAL Check measurements to ensure accurate results



Explanation: User settings have been lost.

*Recommended action:* Please reset the values. If the issue persists, please contact Hanna Instruments technical support.



Explanation: Flash drive is not recognized or it might be damaged.

Recommended action: Please insert a new USB flash drive.



Explanation: Data log is full.

Recommended action: Please review logged data and delete unnecessary logs.

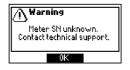


Explanation: Date and time settings have been lost.

**Recommended action:** Please reset the values. If the issue persists, please contact Hanna Instruments technical support.

Battery Low. Connect USB adapter. *Explanation:* Battery level is too low to ensure normal functioning and the meter will turn off.

Recommended action: Connect the USB adapter to charge the battery.


The instrument shows warning messages when some of the features become unavailable. To recover them follow the *Recommended action:* Restart the meter. If the issue persists, please contact Hanna Instruments technical support.



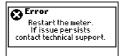
Explanation: English is the only available language. Help function is not available.



Explanation: Real time clock it's not accurate.



*Explanation:* The device serial number inside the memory can not be identified.




Explanation: Logged data are no longer accessible.



Explanation: Battery charge level is not accurate.

If a critical error appears, below message is displayed.



Explanation: A critical error has occured.

**Recommended action:** Restart the meter. If the issue persists, please contact Hanna Instruments technical support.

## **10. STANDARD METHODS**

| Description        | Range               | Method                       |
|--------------------|---------------------|------------------------------|
| Ammonia LR         | 0.00 to 3.00 mg/L   | Nessler                      |
| Ammonia MR         | 0.00 to 10.00 mg/L  | Nessler                      |
| Ammonia HR         | 0.0 to 100.0 mg/L   | Nessler                      |
| Chlorine, Free LR  | 0.00 to 5.00 mg/L   | DPD                          |
| Chlorine, Total LR | 0.00 to 5.00 mg/L   | DPD                          |
| Chromium (VI) LR   | 0 to 300 $\mu$ g/L  | Diphenylcarbohydrazide       |
| Chromium (VI) HR   | 0 to 1000 $\mu$ g/L | Diphenylcarbohydrazide       |
| Color of Water     | 0 to 500 PCU        | Colorimetric Platinum Cobalt |
| Copper LR          | 0.000 to 1.500 mg/L | Bicinchoninate               |
| Copper HR          | 0.00 to 5.00 mg/L   | Bicinchoninate               |
| Cyanuric Acid      | 0 to 80 mg/L        | Turbidimetric                |
| Molybdenum         | 0.0 to 40.0 mg/L    | Mercaptoacetic Acid          |
| Nickel LR          | 0.000 to 1.000 mg/L | PAN                          |
| Nickel HR          | 0.00 to 7.00 g/L    | Colorimetric                 |
| Nitrate            | 0.0 to 30.0 mg/L    | Cadmium reduction            |
| Nitrite HR         | 0 to 150 mg/L       | Ferrous Sulfate              |
| Oxygen, Dissolved  | 0.0 to 10.0 mg/L    | Winkler                      |
| рН                 | 6.5 to 8.5 pH       | Phenol Red                   |
| Phosphate LR       | 0.00 to 2.50 mg/L   | Ascorbic Acid                |
| Phosphate HR       | 0.0 to 30.0 mg/L    | Amino Acid                   |
| Silica LR          | 0.00 to 2.00 mg/L   | Heteropoly Blue              |
| Silver             | 0.000 to 1.000 mg/L | PAN                          |
| Zinc               | 0.00 to 3.00 mg/L   | Zincon                       |
|                    |                     |                              |

## 11. ACCESSORIES

## 11.1. REAGENT SETS

| Code       | Description                       |
|------------|-----------------------------------|
| HI93700-01 | 100 ammonia LR tests              |
| HI93700-03 | 300 ammonia LR tests              |
| HI93701-01 | 100 chlorine free tests (powder)  |
| HI93701-03 | 300 chlorine free tests (powder)  |
| HI93701-F  | 300 chlorine free tests (liquid)  |
| HI93701-T  | 300 chlorine total tests (liquid) |
| HI93702-01 | 100 copper HR tests               |
| HI93702-03 | 300 copper HR tests               |
| HI93705-01 | 100 silica LR tests               |
| HI93705-03 | 300 silica LR tests               |
| HI93708-01 | 100 nitrite HR tests              |
| HI93708-03 | 300 nitrite HR tests              |
| HI93710-01 | 100 pH tests                      |
| HI93710-03 | 300 pH tests                      |
| HI93711-01 | 100 chlorine total tests (powder) |
| HI93711-03 | 300 chlorine total tests (powder) |
| HI93713-01 | 100 phosphate LR tests            |
| HI93713-03 | 300 phosphate LR tests            |
| HI93715-01 | 100 ammonia MR tests              |
| HI93715-03 | 300 ammonia MR tests              |
| HI93717-01 | 100 phosphate HR tests            |
| HI93717-03 | 300 phosphate HR tests            |
| HI93722-01 | 100 cyanuric acid tests           |
| HI93722-03 | 300 cyanuric acid tests           |
| HI93723-01 | 100 chromium (VI) HR tests        |
| HI93723-03 | 300 chromium (VI) HR tests        |
| HI93726-01 | 100 nickel HR tests               |
|            |                                   |

| Code       | Description                   |
|------------|-------------------------------|
| HI93726-03 | 300 nickel HR tests           |
| HI93728-01 | 100 nitrate tests             |
| HI93728-03 | 300 nitrate tests             |
| HI93730-01 | 100 molybdenum tests          |
| HI93730-03 | 300 molybdenum tests          |
| HI93732-01 | 100 dissolved oxygen tests    |
| HI93732-03 | 300 dissolved oxygen tests    |
| HI93731-01 | 100 zinc tests                |
| HI93731-03 | 300 zinc tests                |
| HI93733-01 | 100 ammonia HR tests          |
| HI93733-03 | 300 ammonia HR tests          |
| HI93737-01 | 50 silver tests               |
| HI93737-03 | 150 silver tests              |
| HI93740-01 | 50 nickel LR tests            |
| HI93740-03 | 150 nickel LR tests           |
| HI93749-01 | 100 chromium (VI) LR tests    |
| HI93749-03 | $300\ chromium$ (VI) LR tests |
| HI95747-01 | 100 copper LR tests           |
| HI95747-03 | 300 copper LR tests           |
|            |                               |

## 11.2 pH ELECTRODES

| Code    | Description                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------|
| HI10530 | Triple ceramic, double junction, low temperature glass, refillable pH electrode with conical tip and temperature sensor       |
| HI10430 | Triple ceramic, double junction, high temperature glass, refillable pH electrode with temperature sensor                      |
| HI11310 | Glass body, double junction, refillable pH/temperature electrode                                                              |
| HI11311 | Glass body, double junction, refillable pH/temperature electrode with enhanced diagnostics                                    |
| HI12300 | Plastic body, double junction, gel filled, non refillable pH/temperature electrode                                            |
| HI12301 | Plastic body, double junction, gel filled, non refillable pH/temperature electrode with enhanced diagnostics                  |
| HI10480 | Glass body, double junction with temperature sensor for wine analysis                                                         |
| FC2320  | Double junction, open reference, non refillable, electrolyte viscolene, PVDF body with conical tip, pH/temperature electrode  |
| FC2100  | Double junction, open reference, non refillable, electrolyte viscolene, glass body with conical tip, pH/temperature electrode |
| FC2020  | Double junction, open reference, non refillable, electrolyte viscolene, PVDF body with conical tip, pH/temperature electrode  |

Note: The enhanced diagnostics information are not displayed by meter.

#### 11.3 pH SOLUTIONS

| Code             | Description |
|------------------|-------------|
| BUFFER SOLUTIONS |             |

HI70004P pH 4.01 Buffer Sachets, 20 mL (25 pcs.)
HI70007P pH 7.01 Buffer Sachets, 20 mL (25 pcs.)
HI70010P pH 10.01 Buffer Sachets, 20 mL (25 pcs.)

 H17001L
 pH 1.68 Buffer Solution, 500 mL

 H17004L
 pH 4.01 Buffer Solution, 500 mL

 H17006L
 pH 6.86 Buffer Solution, 500 mL

 H17007L
 pH 7.01 Buffer Solution, 500 mL

 H17009L
 pH 9.18 Buffer Solution, 500 mL

 H17010L
 pH 10.01 Buffer Solution, 500 mL

HI8004L pH 4.01 Buffer Solution in FDA approved bottle, 500 mL
HI8006L pH 6.86 Buffer Solution in FDA approved bottle, 500 mL
HI8007L pH 7.01 Buffer Solution in FDA approved bottle, 500 mL
HI8009L pH 9.18 Buffer Solution in FDA approved bottle, 500 mL
HI8010L pH 10.01 Buffer Solution in FDA approved bottle, 500 mL

#### **ELECTRODE STORAGE SOLUTIONS**

HI70300L Storage Solution, 500 mL

HI80300L Storage Solution in FDA approved bottle, 500 mL

#### **ELECTRODE CLEANING SOLUTIONS**

H170000P Electrode Rinse Sachets, 20 mL (25 pcs.)
H17061L General Cleaning Solution, 500 mL
H17073L Protein Cleaning Solution, 500 mL
H17074L Inorganic Cleaning Solution, 500 mL
H17077L Oil & Fat Cleaning Solution, 500 mL

HI8061L General Cleaning Solution in FDA approved bottle, 500 mL
HI8073L Protein Cleaning Solution in FDA approved bottle, 500 mL

## **ELECTRODE CLEANING SOLUTIONS**

HI8077L Oil & Fat Cleaning Solution in FDA approved bottle, 500 mL HI7082 3.5M KCl Electrolyte, 4x30 mL, for double junction electrodes

HI8082 3.5M KCI Electrolyte in FDA approved bottle, 4x30 mL, for double junction

electrodes.

## 11.4. OTHER ACCESSORIES

| Code       | Description                         |
|------------|-------------------------------------|
| HI72083300 | carrying case                       |
| HI731318   | cloth for wiping cuvettes (4 pcs.)  |
| HI731331   | glass cuvettes (4 pcs.)             |
| HI731335N  | cap for cuvette (4 pcs.)            |
| HI731340   | 200 $\mu$ L automatic pipette       |
| HI731341   | 1000 $\mu$ L automatic pipette      |
| HI731342   | 2000 $\mu$ L automatic pipette      |
| HI740034P  | cap for 100 mL beaker (10 pcs.)     |
| H1740036P  | 100 mL plastic beaker (10 pcs.)     |
| HI740038   | 60 mL glass bottle and stopper      |
| HI740142P  | 1 mL graduated syringe (10 pcs)     |
| HI740143   | 1 mL graduated syringe (6 pcs.)     |
| HI740144   | pipette tip (6 pcs.)                |
| HI740157P  | plastic refilling pipette (20 pcs.) |
| HI740220   | 25 mL graduated glass vial (2 pcs.) |
| HI740223   | 170 mL plastic beaker               |
| HI740224   | 170 mL plastic beaker (12 pcs.)     |
| HI740225   | 60 mL graduated syringe             |
| HI740226   | 5 mL graduated syringe              |
| HI740227   | filter assembly                     |
| HI740228   | filter discs (25 pcs.)              |
| HI 740229  | 100 mL graduated cylinder           |
| DEMI-02    | demineralizer                       |

| Code         | Description                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HI75110/220E | USB power adapter, European plug                                                                                                                                                                                                                                                      |
| HI75110/220U | USB power adapter, USA plug                                                                                                                                                                                                                                                           |
| H176404A     | electrode holder                                                                                                                                                                                                                                                                      |
| HI83306-11   | CAL Check cuvette kit for HI83306                                                                                                                                                                                                                                                     |
| HI83300-100  | Sample preparation kit consisting of activated carbon for 50 tests, demineralizer bottle for 10 L of water, 100 mL graduated beaker with cap, 170 mL graduated beaker with cap, 3 mL pipette, 60 mL syringe, 5 mL syringe, graduated cylinder, spoon, funnel, filter paper (25 pcs.). |
| HI920015     | USB to micro USB cable connector                                                                                                                                                                                                                                                      |
| HI93703-50   | cuvette cleaning solution (230 mL)                                                                                                                                                                                                                                                    |
| HI93703-55   | activated carbon (50 pcs.)                                                                                                                                                                                                                                                            |

#### 12. ABBREVIATIONS

EPA: US Environmental Protection Agency

°C: degree Celsius °F: degree Fahrenheit

µg/L: micrograms per liter (ppb) mg/L: milligrams per liter (ppm) g/L: grams per liter (ppt)

mL: milliliter

GLP good laboratory practice UHR ultra high range

ULR ultra low range
HR: high range
MR: medium range
LR: low range

PAN: 1-(2-pyridylazo)-2-naphtol

TPTZ: 2,4,6-tri-(2-pyridyl)-1,3,5-triazine

All Hanna Instruments conform to the CE European Directives.



RoHS compliant

**Disposal of Electrical & Electronic Equipment.** The product should not be treated as household waste. Instead hand it over to the appropriate collection point for the recycling of electrical and electronic equipment which will conserve natural resources.

**Disposal of waste batteries.** This product contains batteries, do not dispose of them with other household waste. Hand them over to the appropriate collection point for recycling.

Ensuring proper product and battery disposal prevents potential negative consequences for the environment and human health. For more information, contact your city, your local household waste disposal service, the place of purchase or go to www.hannainst.com.



# Recommendations for Users

Before using this product, make sure it is entirely suitable for your specific application and for the environment in which it is used. Any variation introduced by the user to the supplied equipment may degrade the meters' performance. For yours and the meter's safety do not use or store the meter in hazardous environments.

## Warranty |

The HI83306 is warranted for two years against defects in workmanship and materials when used for their intended purpose and maintained according to instructions. Damage due to accidents, misuse, tampering or lack of prescribed maintenance is not covered.

If service is required, contact your local Hanna Instruments Office. If under warranty, report the model number, date of purchase, serial number and the nature of the problem. If the repair is not covered by the warranty, you will be notified of the charges incurred. If the instrument is to be returned to Hanna Instruments, first obtain a Returned Goods Authorization (RGA) number from the Technical Service department and then send it with shipping costs prepaid. When shipping any instrument, make sure it is properly packed for complete protection.

Hanna Instruments reserves the right to modify the design, construction or appearance of its products without advance notice.

## World Headquarters

Hanna Instruments Inc. Highland Industrial Park 584 Park East Drive Woonsocket, RI 02895 USA www.hannainst.com



MAN83306 Printed in ROMANIA