ОКП 42 1522

СОГЛАСОВАНО

Раздел 5 Методика поверки
Зам. руководителя ГЦИ СИ
ФГУ «Менделеевский ЦСМ» директор Центрального отделения
С.Г. Рубайлов

10 w ab fema 2010 r.

ПРЕОБРАЗОВАТЕЛИ ПРОМЫШЛЕННЫЕ ИТ-2511, ИТ-2512

Формуляр ГРБА.421221.001ФО

Содержание

1 ОБЩИЕ УКАЗАНИЯ	3
2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
3 КОМПЛЕКТНОСТЬ	8
4 ГРАДУИРОВКА ПРЕОБРАЗОВАТЕЛЕЙ	8
5 МЕТОДИКА ПОВЕРКИ (КАЛИБРОВКИ)	10
6 ТРАНСПОРТИРОВАНИЕ	14
7 ПРАВИЛА ХРАНЕНИЯ	14
8 КОНСЕРВАЦИЯ	15
9 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ	15
10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	16
11 СВЕДЕНИЯ О ПОВЕРКЕ	16
12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	17
13 ПРОЧИЕ СВЕДЕНИЯ	17
Приложение АНоминальные значения выходных сигналов преобразователей	18
Приложение Б Номинальные статические характеристики преобразования ЭДС электродных систем	20
Приложение ВОсновные технические данные термодатчика	22
Приложение ГСхема электрических соединений для градуировки и поверки преобразователей	23

1 ОБЩИЕ УКАЗАНИЯ

Преобразователи промышленные ИТ-2511 и ИТ-2512 (далее – преобразователи) предназначены для измерения электродвижущей силы (ЭДС) первичных измерительных преобразователей (далее - электродная система), применяемых для потенциометрических измерений, преобразования измеренной величины в значение показателя активности ионов водорода (рН), а также индикации величины ЭДС или значения рН на встроенном дисплее. В комплекте с первичным термопреобразователем сопротивления преобразователи могут также производить измерение и выводить на дисплей температуру анализируемой среды.

Преобразователи соответствуют ГОСТ 27987-88 и могут применяться для непрерывных потенциометрических измерений в технологических водных растворах и пульпах (в т. ч. при анализе воды с низкой электропроводностью) в системах контроля и управления технологическими процессами различных видов экономической деятельности.

Преобразователи ИТ-2511 и ИТ-2512 формируют электрический непрерывный аналоговый выходной сигнал постоянного тока от 4 до 20 мА по ГОСТ 26.011-80, пропорциональный рН анализируемой среды или ЭДС электродной системы.

Преобразователь ИТ-2512, кроме того, обеспечивает двухстороннюю цифровую связь в системах автоматического контроля и управления с передачей результатов измерения и управляющих сигналов.

Преобразователи совместно с различной арматурой (например, ДП-8ИТ, ДМ-7ИТ, ДПг-4М, ДМ-5М, БГ-1ИТ и др.) и электродными системами могут входить в состав анализаторов, обеспечивающих проведение измерений в открытых и закрытых емкостях, в трубопроводах и системах проточного пробоотбора.

Преобразователи рассчитаны на работу с любыми электродными системами, в том числе включающими в себя твердоконтактные измерительные электроды, например серии ЭСТ. Электродные системы могут быть подключены к преобразователям по дифференциальной или недифференциальной схеме.

Устройство, принцип работы и указания по эксплуатации преобразователей изложены в руководстве по эксплуатации ГРБА.421221.001РЭ.

Модификация ИТ-2511 выпускается с входным дифференциальным усилителем, имеющим два высокоомных входа, индикацией результатов измерения и выходным унифицированным сигналом постоянного тока.

Модификация ИТ-2512 выпускается с входным дифференциальным усилителем, имеющим два высокоомных входа, индикацией результатов измерения, выходным унифицированным сигналом постоянного тока и обеспечивающим модулированную последовательную двухстороннюю цифровую связь с кодировкой сигнала методом частотного сдвига (FSK) в системах автоматического контроля и управления.

Преобразователи не являются источниками радиопомех, устойчивы к воздействию электромагнитных помех и соответствуют требованиям ГОСТ Р 51317.4.2-2001; ГОСТ Р 51317.4.4-2001; ГОСТ Р 51317.4.5-2001; ГОСТ Р 51317.4.11-2001 степень жесткости 2, критерий качества функционирования В.

Степень защиты преобразователей от попадания внутрь твердых тел и влаги IP64 в соответствии с ГОСТ 14254-96.

Преобразователи предназначены для эксплуатации в рабочих условиях, соответствующих группам исполнений С3, Р1, L3 по ГОСТ Р 52931-2008:

- 1) температура окружающего воздуха от минус 10 °C до плюс 50 °C;
- 2) относительная влажность воздуха (при 35 °C и более низких температурах без конденсации влаги) до 95 %;

3) давление окружающего воздуха

от 84 до 106,7 кПа;

4) вибрация в месте установки:

частота

от 5 до 25 Гц; до 0,1 мм.

амплитуда смещения

При заказе преобразователей и в документации другой продукции, в которой они могут быть применены, указывается наименование, условное обозначение и обозначение ТУ 4215-057-89650280-2010.

Пример обозначения преобразователя:

«Преобразователь промышленный ИТ-2511 ТУ 4215-057-89650280-2010».

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Диапазоны показаний (измерений) преобразователей по показаниям на дисплее и цены единиц младшего разряда (дискретности) приведены в таблице 1.

Таблица 1

Измеряемая величина	Единицы	Диапазон изме-	Дискрет-
(условное обозначение режима измерения)	измерения	рения величин	ность
Показатель активности ионов водорода (режим рН)	рН	от минус 2 до плюс 16	0,01
ЭДС электродной системы (режим mV)	мВ	от минус 3000 до плюс 2000	1
Температура анализируемой среды (режим t)	°C	от минус 20 до плюс 150	0,1

- **2.2** Пределы допускаемых значений основной абсолютной погрешности преобразователей по показаниям на дисплее:
 - ± 0,02 pH- в режиме pH;
 - ± 2 мВ в режиме mV;
 - \pm 0,5 °С в режиме t.
- **2.3** Питание преобразователей осуществляется от источника постоянного тока напряжением от 12 В при нулевом сопротивлении в цепи питания до 36 В при сопротивлении в цепи питания равном 1100 Ом и выходной мощностью не менее 3 Вт. Величина электрического тока, потребляемого преобразователями не более 25 мА.
- 2.4 Преобразователи обеспечивают преобразование величины рН или ЭДС электродной системы в аналоговый выходной сигнал постоянного тока по ГОСТ 26.011-80 от 4 до 20 мА для нагрузок с суммарным сопротивлением от нуля при напряжении питания 12 В до 1100 Ом при напряжении питания 36 В.
- **2.5** Аналоговый выходной сигнал имеет линейную зависимость от величин рН и ЭДС электродной системы (приложение A).

Номинальная статическая характеристика преобразователей определяется уравнением

$$Y = \frac{16}{X_N} \cdot (X_{HOM} - X_H) + 4,$$
 (1)

где Ү - выходной ток, мА;

16 - ширина диапазона изменения выходного тока, равная разности между его верхним и нижним пределами, мА;

 X_N - ширина диапазона измерения информативного параметра входного сигнала, равная разности между его верхним и нижним пределами, мВ, рН;

Хном - номинальное значение информативного параметра входного сигнала, мВ, рН;

Xн – нижний предел поддиапазона измерения информативного параметра входного сигнала, на который настроен преобразователь, мВ, рН;

- 4 нижний предел изменения выходного тока, мА.
- **2.6** Поддиапазоны преобразования преобразователей, соответствующие нормирующим значениям аналогового выходного сигнала (2.4):
 - 1) Режим рН

Верхний предел поддиапазона Хв, рН, определяется выражениями

$$\begin{cases}
Xe = XH + XN, & npu \quad Xe > XH \\
Xe = XH - XN, & npu \quad Xe < XH
\end{cases}$$
(2)

где XH — нижний предел поддиапазона (значение pH, соответствующее минимальному значению выходного тока), устанавливается в пределах от минус 2,00 до плюс 16,00 pH с дискретностью 0,01 pH;

 X_N - ширина поддиапазона, равная разности между верхним и нижним пределами поддиапазона, выбирается из ряда: 1,0; 1,5; 2,0; 2,5; 5,0; 10,0; 15,0 pH.

2) Режим mV

Верхний предел поддиапазона Xв (значение ЭДС электродной системы, соответствующее максимальному значению выходного тока), мВ, определяется выражением (2), где нижний предел поддиапазона Xн устанавливается в пределах от минус 3000 до плюс 2000 мВ с дискретностью 1 мВ, ширина поддиапазона X_N выбирается из ряда: 100; 150; 200; 250; 500; 1000; 1500; 2000.

2.7 Пределы допускаемого значения основной приведенной погрешности преобразователей по аналоговому выходному сигналу не более значений, указанных в таблице 2.

I a	пп		~	2
	\mathbf{v}_{i}	,, ,,		_

		Режим рН				Режим mV									
Метрологические характеристики	ПО	вых	одн	ому	СИГ	налу	для	ПО	вых	одно	ому	СИГН	алу д	ля ши	рины
метрологические характеристики		ширины поддиапазона, рН				поддиапазона, мВ									
		1,5	2,0	2,5	5,0	10,0	15,0	100	150	200	250	500	1000	1500	2000
Пределы допускаемого значения основной приведенной погрешности, %	2,0	1,5	1,0	1,0	0,5	0,2	0,2	2,0	1,5	1,0	1,0	0,5	0,2	0,2	0,1

- **2.8** Нестабильность показаний на дисплее преобразователей и аналогового выходного сигнала преобразователей в течение 24 ч. непрерывной работы (исключая время прогрева) не превышает предела допускаемого значения основной погрешности.
- **2.9** Преобразователи рассчитаны для совместной работы с термопреобразователем сопротивления по ГОСТ Р 8.625-2006 (датчиком температуры) с номинальной статической характеристикой преобразования 1000П/1,3850.
- **2.10** В преобразователях предусмотрена компенсация температурных изменений ЭДС электродной системы при измерении рН в рабочем диапазоне температур анализируемой среды (2.1).

Погрешность температурной компенсации по показаниям на дисплее и по аналоговому выходному сигналу не превышает двух пределов соответствующих допускаемых значений основных погрешностей.

2.11 Дополнительные погрешности преобразователей по показаниям на дисплее, вызванные изменениями внешних влияющих факторов, не более значений, указанных в таблице 3.

Таблица 3

Внешние влияющие факторы	Дополнительные погрешности показаниям на дисплее, в долях предела допускаемого значе-			
и границы их изменений	ния основной погрешности			
	Режим измерения рН	Режим измерения mV		
1 Температура окружающего воздуха от 5 °C до 50 °C на каждые 10 °C от номинального значения 20 °C.	1,0	1,0		
2 Сопротивление в цепи измерительного электрода на каждые 500 МОм от 0 до 1000 МОм.	0,5	0,5		
3 Сопротивление в цепи электрода сравнения на каждые 10 кОм от 0 до 20 кОм.	0,5	0,5		
4 Напряжение переменного тока до 50 мВ частотой 50 Гц в цепи электрода сравнения.	1,0	1,0		
5 Напряжение постоянного тока \pm 1,5 В в цепи «земля-раствор» на каждые 1000 Ом сопротивления электрода сравнения.	0,25	0,25		

- 2.12 Дополнительная погрешность преобразователей по аналоговому выходному сигналу, вызванная изменением температуры окружающего воздуха от 5 °C до 50 °C на каждые 10 °C от номинального значения 20 °C не более одного предела допускаемого значения основной приведенной погрешности.
- **2.13** Преобразователи рассчитаны для работы с электродными системами с нормируемыми значениями координат изопотенциальной точки E_i р X_i и градуировочной характеристикой следующего вида

$$Ex = E_i + St \cdot (pH - pX_i), \tag{3}$$

где Ex - номинальное значение ЭДС электродной системы, соответствующее измеряемому значению pH, мB;

 E_i , pX_i - номинальные значения координат изопотенциальной точки электродной системы, на которую настроен преобразователь, мВ и рН соответственно;

рН - номинальное значение рН в данной точке статической характеристики;

St - номинальное значение крутизны характеристики электродной системы, на которую настроен преобразователь, мВ/рН.

Значение St определяется выражением

$$St = -(54,196 + 0,1984 \cdot t) \cdot Ks , \tag{4}$$

где t - температура анализируемой среды, °C;

Ks – коэффициент, позволяющий учитывать отклонение крутизны электродной системы от теоретического значения, для которого Ks = 1.

2.14 В преобразователях обеспечивается настройка на параметры электродной системы, приведенные в таблице 4.

Таблица 4

Параметры	Рабочий диапазон изменения
Крутизна характеристики электродной системы St, мВ/рН (при t = 20 °C)	от минус 47,7 до минус 63,4
Координата изопотенциальной точки Еі, мВ	от минус 3000 до плюс 2000
Координата изопотенциальной точки рХ _і	от минус 1,99 до плюс 15,99

- **2.15** Преобразователь ИТ-2512 обеспечивает возможность совместной работы с ПЭВМ. Связь осуществляется при помощи кодировки сигнала методом частотного сдвига (FSK) с **HART**-протоколом управления (Highway Addressable Remote Transducer).
- **2.16** Мощность, потребляемая блоком питания от сети переменного тока при номинальном напряжении питания, не превышает 8,0 В•А.
 - 2.17 Время прогрева преобразователей: 15 мин.
 - 2.18 Габаритные размеры и масса соответствуют таблице 5.

Таблица 5

Исполнение	Габаритные размеры (длина×ширина×высота), мм, не более	Масса, кг, не более
Преобразователи ИТ-2511, ИТ-2512	150×120×120	1,0

- **2.19** Электрическая изоляция выдерживает без пробоя и перекрытия испытательное синусоидальное напряжение (среднеквадратическое значение):
 - 500 В между выходными цепями преобразователей и их корпусом.
 - 2.20 Электрическое сопротивление изоляции не менее:
 - 50 МОм между выходными цепями преобразователей и их корпусом.
- **2.21** Средняя наработка на отказ преобразователей с учетом технического обслуживания, регламентируемого эксплуатационной документацией для нормальных условий, 20000 ч. Средний срок службы преобразователей 10 лет.

3 КОМПЛЕКТНОСТЬ

Комплект поставки преобразователей соответствует таблице 6.

Таблица 6

Наименование и условное обозначение	Обозначение	Коли- чество	Примечание				
Преобразователь ИТ-2511.	ГРБА.301122.001-01		Поставляется один из преобразовате-				
Преобразователь ИТ-2512.	ГРБА.301122.001		лей.				
Блок питания DRA10-24A*.			Поставляется по заказу за дополнительную оплату.				
			«CHINFA», Тайвань				
Модем MD-HART.	КГПШ.407374.017		Поставляются по заказу за дополнительную оплату (только для ИТ-2512).				
			СКБ «Промавтоматика».				
Провод.	ГРБА.757445.001	1 шт.					
Кабель.	ГРБА.685611.001	1 шт.	Приложение Г.				
Кабель.	ГРБА6.644.026	1 шт.	Приложение Г.				
Кабель.	ГРБА6.644.041	1 шт.					
Коробка соединительная.	ГРБА6.420.005	1 шт.	Поставляется по заказу за дополни-				
Кабель КММ-7*0,12.		5 м.	тельную оплату.				
Формуляр.	ГРБА.421221.001ФО	1 экз.					
Руководство по эксплуатации.	ГРБА.421221.001РЭ	1 экз.					
Руководство по эксплуата- ции. Приложение Б.	ГРБА.421221.001РЭ	1 экз.	Только для ИТ-2512.				
Компакт диск	ГРБА.467613.001	1 шт.					
*Допускается поставлять другой блок питания с параметрами, соответствующими техническим усло-							

*Допускается поставлять другой блок питания с параметрами, соответствующими техническим условиям ТУ 4215-057-89650280-2010.

4 ГРАДУИРОВКА ПРЕОБРАЗОВАТЕЛЕЙ

- 4.1 Градуировка преобразователей производиться в следующих случаях:
- при вводе в эксплуатацию нового преобразователя, а также после ремонта или после длительного хранения;
- при проверке и периодическом контроле основных эксплуатационнотехнических характеристик преобразователя, если обнаружится их несоответствие нормируемым значениям.
 - перед проведением поверки (калибровки).
- **4.2** Для градуировки преобразователей необходимы следующие измерительные приборы и оборудование:
 - 1) имитатор электродной системы (например, И-02);
- 2) компаратор напряжения (калибратор), диапазон выходного напряжения от 0 до 2,11 В, класс 0,01 (например P3003);
- 3) цифровой вольтметр с пределами измерения 500 мВ, класса 0,15 (например Щ300);
- 4) резистор с сопротивлением 20 Ом \pm 0,1 % (подключается между входами цифрового вольтметра при проверках аналогового выхода преобразователя);
 - 5) магазин сопротивлений класса 0.02 (например, МСР-60М).
- Схема электрических соединений для градуировки преобразователей приведена в приложении Г.

- 4.3 Градуировка производится для преобразования ЭДС электродной системы с использованием измерительного рН-электрода ЭСТ-0601 или измерительного рН-электрода ЭС-10602/7 с хлорсеребряным электродом сравнения. Номинальные статические характеристики преобразования рН электродной системы приведена в приложении Б (таблица Б.1 и Б.2). Номинальные значения выходных сигналов преобразователей приведены в приложении А.
- **4.4** Перед градуировкой преобразователя необходимо выполнить следующие операции:
 - 1) установить на имитаторе значения: $R_{\text{изм}} = 0 \text{ MOm}$; $R_{\text{всп}} = 0 \text{ кOm}$;
 - 2) прогреть преобразователь в течение не менее 30 мин;
- 3) в режиме редактирования координат изопотенциальной точки электродной системы, согласно указаниям руководства по эксплуатации ГРБА.421221.001РЭ ввести координаты изопотенциальной точки используемого рН-электрода (приведены в эксплуатационной документации электрода). В паспортах на электроды параметр pX_i обозначен как pH_i
- **4.5** Градуировка преобразователей производится при автоматическом измерении температуры и номинальных значениях параметров электродной системы, согласно указаний руководства по эксплуатации.

Ниже приведен пример градуировки преобразователя для работы с электродом ЭСТ-0601, имеющим координаты изопотенциальной точки E_i = -1976 мB, pX_i = 2,2 (таблица Б.1) на поддиапазоне от 6,00 до 8,50 pH:

- 1) в режиме редактирование параметров аналогового выходного сигнала установить поддиапазон преобразователя, соответствующий нормирующим значениям аналоговых выходных сигналов, от 6 до 8,5 рН;
- 2) перейти в режим «**НАСТРОЙКА**», установить на магазине сопротивлений значение 1077,9 Ом (соответствует 20 °C, приложение В таблица В.1), подать от компаратора напряжение минус 2197,02 мВ (соответствует рН 6,0 при 20 °C, приложение Б, таблица Б.1);
- 3) пользуясь указаниями руководства по эксплуатации, настроить преобразователь по рН1 = 6,00;
- 4) подать от компаратора напряжение минус 2342,43 мВ (соответствует рН 8,5 при 20 °С, приложение Б, таблица Б.1);
 - 5) настроить преобразователь по pH2 = 8,50;
- 6) перейти в режим измерения, установить на магазине сопротивлений МС сопротивление 1232,4 Ом (соответствует 60 °C, приложение В таблица В.1), подать от компаратора напряжение минус 2326,33 мВ (соответствует рН 7,5 при 60 °C, приложение Б, таблица Б.1);
- 7) на дисплее должны установиться показания (7,50 \pm 0,02) pH и значение температуры (60 \pm 0,5) °C, показания цифрового вольтметра должны соответствовать (272 \pm 1) мВ.
- 8) если градуировка проводится не для поверки (калибровки) преобразователя, установить необходимый для эксплуатации поддиапазон измерения. Зафиксировать рабочий поддиапазон измерения в таблице раздела «Движение прибора при эксплуатации» настоящего формуляра.
- **4.6** Градуировка преобразователя для работы с электродом ЭС-10602/7, имеющим координаты изопотенциальной точки $E_i = -25$ мВ, $pX_i = 7,0$, проводится аналогично. Значения ЭДС электродной системы приведены в таблице Б.2.

5 МЕТОДИКА ПОВЕРКИ (КАЛИБРОВКИ)

Настоящая методика распространяется на преобразователи промышленные ИТ-2511 и ИТ-2512.

Межповерочный интервал преобразователей - 1 год.

5.1 Операции и средства поверки (калибровки)

При проведении поверки (калибровки) должны быть выполнены следующие операции и применены средства поверки с характеристиками, указанными в таблице 7.

Таблица 7

Наименование операции	операции методики регламентирующего технические требования к средст-		проведен	ельность ия опера- при периоди-
	поверки	ву, метрологические характеристики	ной	ческой
Внешний осмотр	5.6.1	-	+	+
Опробование	5.6.2	-	-	+
Контроль основных погрешностей преобразователя:	5.6.3			
- в режиме t	5.6.3.1	Магазин сопротивлений МСР-60М, предел измерения 10^4 Ом, класс точности 0,02	+	+
- в режиме рН	5.6.3.2	Магазин сопротивлений МСР-60М, предел измерения 10^4 Ом, класс точности 0,02; Компаратор напряжений Р3003 ТУ25-04.3771-79, диапазон измерения от 0 до 11,11 В, класс точности 0,01; Имитатор электродной системы типа И-02 ТУ25-05.2141-76, R_{u} = 0, (500, 1000) МОм ± 25%, R_{B} = 0, (10, 20) кОм ± 1%; Калиброванный резистор сопротивлением 20 Ом ± 0,1 %; Цифровой вольтметр Щ300, пределы измерения 120 мВ, 400 мВ; 12 В, класс точности 0,15	+	+
Контроль дополни- тельных погрешностей преобразователя по показаниям на дис- плее, вызванных изме- нением сопротивления в цепи:	5.6.4			
- измерительного элек- трода	5.6.4.1	Компаратор напряжений Р3003 ТУ25-04.3771-79, диа- пазон измерения от 0 до 11,11 В, класс точности	+	+
- электрода сравнения	5.6.4.2	0,0005; Имитатор электродной системы типа И-02 ТУ25-05.2141-76, $R_{\text{и}}$ = 0, (500, 1000) МОм ± 25%, $R_{\text{в}}$ = 0, (10, 20) кОм ± 1%.	+	+

Примечание - Допускается замена вышеуказанного оборудования аналогичным, не уступающим по техническим характеристикам.

При получении отрицательного результата любой из операции, приведенной в таблице 7, поверка прекращается, преобразователь бракуется.

5.2 Требования безопасности

При проведении поверки (калибровки) должны соблюдаться требования безопасности, указанные в разделе «Указания мер безопасности» руководства по эксплуатации ГРБА.421221.001РЭ.

5.3 Требования к квалификации поверителей

К проведению измерений при поверке (калибровке) и обработке результатов измерений допускаются лица, изучившие эксплуатационную документацию преобразователя и действующие правила эксплуатации электроустановок.

5.4 Условия поверки (калибровки)

При проведении поверки (калибровки) должны соблюдаться следующие условия:

- температура окружающего воздуха, °C 20 \pm 5; - относительная влажность воздуха, % от 30 до 80; - атмосферное давление, кПа от 86 до 106,7; - напряжение питания, В 220 \pm 22; - частота питающего тока, Гц 50 \pm 0,5; - вибрация, тряска и удары отсутствуют.

5.5 Подготовка к поверке (калибровке)

Перед проведением поверки (калибровки) необходимо выдержать преобразователь при температуре (20 \pm 5) °C и относительной влажности от 30 % до 80 % в течение 24 ч.

Выполнить градуировку поверяемого преобразователя согласно раздела 4 формуляра.

Схема электрических соединений для поверки (калибровки) преобразователя приведена в приложении Г.

Таблицы номинальных значений ЭДС электродной системы и зависимость сопротивления термодатчика от температуры, используемые при проверках, приведены соответственно в приложениях Б (таблица Б.2) и В.

5.6 Проведение поверки (калибровки)

5.6.1 Внешний осмотр

На поверку (калибровку) преобразователь должен поступать в следующей комплектности:

- 1) преобразователь;
- 2) комплект кабелей (таблица 6);
- 3) эксплуатационная документация.

При проведении визуального осмотра должно быть установлено соответствие преобразователя следующим требованиям: не допускаются дефекты корпуса, влияющие на работоспособность преобразователя, нечеткое изображение надписей.

5.6.2 Опробование

При опробовании проверить работоспособность преобразователя:

- 1) включить питание преобразователя, на дисплей должно выводиться значение в единицах рН или ЭДС электродной системы (мВ), а так же измеренное или введенное вручную значение температуры анализируемой среды;
- 2) проверить работоспособность органов управления: нажатие кнопок должно сопровождаться соответствующим изменением режима работы преобразователя.

- **5.6.3** Контроль основных погрешностей преобразователя.
- **5.6.3.1** Основную абсолютную погрешность преобразователя в режиме измерения температуры по показаниям на дисплее контролировать в точках, равных 20; 60; 100 °C, следующим образом:
- установить на магазине сопротивлений MC сопротивление, соответствующее проверяемой точке (приложение B);
 - отметить показания на дисплее.

Основная абсолютная погрешность преобразователя рассчитывается по формуле

$$\Delta t = t_{o} - t_{hom}, \tag{5}$$

где Δt - основная абсолютная погрешность, °C;

 t_{∂} – показания на дисплее, °С;

 $t_{\text{ном}}$ - значение температуры, соответствующее контрольной точке, °С.

Основная абсолютная погрешность преобразователя должна быть не более $\pm\,0.5\,^{\circ}\text{C}.$

5.6.3.2 Контроль основной погрешности преобразователя по показаниям на дисплее и аналоговому выходному сигналу в режиме измерения рН.

Основная погрешность преобразователя проверяется в контрольных точках: 6,5; 7,5, 8,0 рН на поддиапазоне от 6 до 8,5 рН следующим образом:

- установить на магазине сопротивлений МС сопротивление 1077,9 Ом, соответствующее 20 °C;
- подать последовательно от калибратора Р напряжения, соответствующие контролируемым точкам поддиапазона измерения (приложение Б, таблица Б.2);
 - зафиксировать показания на дисплее и цифровом вольтметре (Уцв).

Показания на дисплее должны соответствовать контрольной точке с погрешностью не более $pH \pm 0,02$;

Основную приведенную погрешность по аналоговому выходному сигналу рассчитать по формуле

$$\gamma_{\text{\tiny GbLX}} = \frac{Y_{\text{\tiny HOM}}}{Y_{N}} \cdot 100\% , \qquad (6)$$

где $\gamma_{{\scriptscriptstyle \it BbLX}}$ - основная приведенная погрешность по выходному сигналу, %;

 $\mathcal{Y}_{\text{ном}}$ - номинальное значение выходного сигнала, соответствующее проверяемой точке, мВ, приведено в таблице 8;

 Y_N - нормирующее значение выходного сигнала, численно равное 320 мВ.

Примечание - Значения по аналоговому выходному сигналу при проверках определяются по падению напряжения (в мВ) на калиброванном резисторе 20 Ом.

Таблица 8

Контрольная точка, pH	Номинальные значения аналогового выходного сигнала, мВ
6,50	144
7,50	272
8,00	336

Основная абсолютная погрешность преобразователя по аналоговому выходному сигналу должна быть не более \pm 1,0 %.

- **5.6.4** Контроль дополнительных погрешностей преобразователя по показаниям на дисплее, вызванных изменением сопротивления в цепи измерительного электрода и электрода сравнения.
- **5.6.4.1** Дополнительную погрешность преобразователя по показаниям на дисплее, вызванную изменением сопротивления в цепи измерительного электрода, проверять в режиме mV следующим образом:
 - подать от калибратора Р напряжение 1990 мВ;
- после окончания переходного процесса зафиксировать показания на дисплее при сопротивлении в цепи измерительного электрода, равном 0 МОм (Y_0) , затем 1000 МОм (Y_1) ;
- повторить проверку, подключив центральную жилу кабеля ГРБА6.644.041 к контакту 11, экран к контакту 9, а провод ГРБА7.765.002 к контактам 6 8 клеммной колодки преобразователя (приложение Г), при этом напряжение от калибратора Р подавать с обратной полярностью.

Дополнительную погрешность от изменения сопротивления в цепи измерительного электрода на каждые 500 МОм рассчитать по формуле

$$\delta_{u_{3M}} = \frac{Y_1 - Y_0}{2\Lambda} \tag{7}$$

где $\delta_{\it{u}_{\it{3M}}}$ - дополнительная погрешность по показаниям на дисплее, в долях основной погрешности;

 Y_0 – показания на дисплее при сопротивлении в цепи измерительного электрода, равном нулю, мВ;

 Y_1 - показания на дисплее при сопротивлении в цепи измерительного электрода, равном 1000 МОм, мВ;

 Δ - предел допускаемого значения основной погрешности преобразователя по показаниям на дисплее, равный ± 2 мВ.

Дополнительная погрешность по показаниям на дисплее, вызванная отклонением сопротивления в цепи измерительного электрода от 0 до 1000 МОм на каждые 500 МОм, должна быть не более ± 0,5 долей основной погрешности.

- **5.6.4.2** Дополнительную погрешность по показаниям на дисплее, вызванную отклонением сопротивления в цепи электрода сравнения от 0 до 20 кОм проверять в режиме mV следующим образом:
 - подать от калибратора Р напряжение 1990 мВ;
- зафиксировать показания на дисплее при сопротивлении в цепи электрода сравнения, равном 0 кОм (Y_0) , затем 20 кОм (Y_1) .

Дополнительную погрешность от изменения сопротивления в цепи электрода сравнения на каждые 10 кОм рассчитать по формуле

$$\mathcal{S}_{ecn} = \frac{Y_1 - Y_0}{2\Lambda},\tag{8}$$

- где $\delta_{\!\scriptscriptstyle BCR}$ дополнительная погрешность по показаниям на дисплее, в долях основной погрешности;
- Y_0 показания на дисплее при сопротивлении в цепи электрода сравнения, равном нулю, мВ;
- Y_1 показания на дисплее при сопротивлении в цепи электрода сравнения, равном 20 кОм, мВ;
- Δ предел допускаемого значения основной погрешности преобразователя по показаниям на дисплее, равный ± 2 мВ.

Дополнительная погрешность по показаниям на дисплее, вызванная отклонением сопротивления в цепи электрода сравнения от 0 до 20 кОм на каждые 10 кОм, должна быть не более ± 0,5 долей основной погрешности.

- 5.7 Оформление результатов поверки (калибровки)
- **5.7.1** При проведении операций поверки оформляют протокол результатов измерений по поверке произвольной формы.
- **5.7.2** Положительные результаты поверки оформляют путем выдачи свидетельства о поверке или нанесением поверительного клейма в соответствии с ПР 50.2.006-94 и ПР 50.2.007-94.
- **5.7.3** При отрицательных результатах поверки выдают извещение о непригодности с указанием причин по ПР 50.2.006-94, свидетельство аннулируют, клеймо гасят, а прибор к применению не допускают.

6 ТРАНСПОРТИРОВАНИЕ

Преобразователи должны транспортироваться в транспортной таре в закрытом транспорте любого вида, кроме воздушного, в соответствии с правилами и нормами, действующими на данный вид транспорта.

Условия транспортирования преобразователей в упаковке предприятияизготовителя должны соответствовать условиям хранения 5 по ГОСТ 15150-69.

Железнодорожные вагоны, контейнеры, кузова автомобилей, используемые для транспортирования преобразователей, не должны иметь следов перевозки цемента, угля, химикатов и т.д.

Расстановка и крепление транспортных ящиков при транспортировании должны обеспечивать устойчивое положение при следовании в пути, отсутствие смещения и ударов друг о друга.

После транспортирования при отрицательных температурах преобразователи перед эксплуатацией должны быть выдержаны в распакованном виде в нормальных условиях не менее 24 ч.

7 ПРАВИЛА ХРАНЕНИЯ

- **7.1** Хранение преобразователей до ввода в эксплуатацию в упаковке предприятия-изготовителя должно соответствовать условиям хранения 1 по ГОСТ 15150-69. Данное требование относится только к хранению в складских помещениях потребителя и поставщика, но не распространяется на хранение в железнодорожных складах.
- **7.2** Хранение преобразователей без упаковки следует производить при температуре окружающего воздуха от 10 °C до 35 °C и относительной влажности до 80 % при температуре 35 °C.

В помещениях для хранения преобразователей не должно быть пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

8 КОНСЕРВАЦИЯ

Преобразователь подвергнут на предприятии-изготовителе консервации согласно ГОСТ 9.014-78 по варианту защиты ВЗ-10 и упакован по варианту упаковки ВУ-5.

Предельный срок защиты без переконсервации 3 года.

Сведения о переконсервации преобразователя приведены в таблице 9.

Таблица 9

Дата	Наименование работы	Срок действия, годы	Должность, фамилия и подпись

9 ДВИЖЕНИЕ ПРИБОРА ПРИ ЭКСПЛУАТАЦИИ

9.1 Сведения о движении преобразователя при эксплуатации приведены в таблице 10.

Таблица 10

	3171 Eq. 10				-	
Дата	Где Дата		Ha	работка	Принило	Подпись лица,
упаковки	установлено	СНЯТИЯ	с начала экс-	после последнего	Причина снятия	проводившего ус-
упаковки	установлено	СПЯТИЯ	плуатации	ремонта	СПЯТИЯ	тановку (снятие)

9.2 Сведения о закреплении преобразователя при эксплуатации, а также рабочие режимы приведены в таблице 11.

Таблица 11

Должность, фами- лия и инициалы	наименование, га документа) Открепление	Используемый выходной сигнал	Рабочий поддиа- пазон измерения	Примеча- ние
	 p			

	10 СВИДЕ	ТЕЛЬСТВО (О ПРИЕМКЕ	
и принят в со действующей	азователь промышленны ответствии с обязательн и технической документ нан годным для эксплуата	ыми требоваю ацией, дейс	ниями государств	енных стандартов,
		Контролер ОТ	К	
М.П.				
	личная подпись		расшифровка п	одписи
-	число, месяц, год			
	mond, moond, rod			
	11 CBI	ЕДЕНИЯ О П	ОВЕРКЕ	
соответствии	ователь промышленный с обязательными требог ции, и признан годным дл	ваниями госуд	дарственных стан,	
		Поверитель		
МΠ				
•	личная подпись		расшиф	ровка подписи
Дата пове	рки			
			число,	месяц, год

12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- **12.1** Изготовитель гарантирует соответствие преобразователя требованиям технических условий, при соблюдении потребителем правил эксплуатации, транспортирования и хранения.
 - 12.2 Гарантийный срок хранения 6 месяцев со дня изготовления.
 - 12.3 Гарантийный срок эксплуатации 24 месяца со дня ввода в эксплуатацию.
- **12.4** Потребитель имеет право на гарантийное обслуживание преобразователя в течение гарантийного срока эксплуатации. Гарантийный ремонт преобразователя и принадлежностей частей вплоть до замены преобразователя в целом, если они за это время выйдут из строя или их характеристики окажутся ниже норм технических требований производятся безвозмездно при условии, что их работоспособность была нарушена вследствие дефекта изготовителя.
 - 12.5 Гарантийное обслуживание не производится в следующих случаях:
 - отсутствие или повреждение пломб;
 - нарушение правил эксплуатации преобразователя;
- наличие механических повреждений, попытки ремонта кем-либо, кроме предприятий, осуществляющих гарантийное обслуживание.
- **12.6** По вопросам гарантийного и послегарантийного обслуживания обращаться по адресу предприятия-изготовителя:

Россия, 111020, г. Москва, ул. Сторожевая, 31; ООО «Измерительная Техника». Тел./факс: +107(495) 232-49-74, 232-42-14, E-mail: izmteh@ izmteh.ru

Гарантийный срок продлевается на время от подачи рекламации до введения в строй преобразователя.

12.7 Сведения о рекламациях

При неисправности преобразователя в период гарантийного срока потребителем должен быть составлен акт с указанием признаков неисправностей. Все предъявляемые рекламации и их краткое содержание регистрируются. Сведения о рекламациях и принятых по ним мерах вносятся в таблицу 12.

Таблица 12

Дата рек- ламации	Краткое содержание	Исх. № и дата документа	Принятые меры	Отметка ОТК

13 ПРОЧИЕ СВЕДЕНИЯ

Сильнодействующих ядовитых веществ прибор не содержит. Утилизация производится в соответствии с правилами и нормами, действующими на предприятии пользователя.

Приложение А

(справочное)

Номинальные значения выходных сигналов преобразователей

1 Номинальные значения аналогового выходного сигнала преобразователей в режиме измерения рН на поддиапазоне от 6,00 до 8,50 рН приведены в таблице A.1.

Таблица А.1

рН	Номинальные значения аналогового выходного сигнала, мА
6,00	4,00
6,10	4,64
6,20	5,28
6,30	5,92
6,40	6,56
6,50	7,20
6,60	7,84
6,70	8,48
6,80	9,12
6,90	9,76
7,00	10,40
7,10	11,04
7,20	11,68
7,30	12,32
7,40	12,96
7,50	13,60
7,60	14,24
7,70	14,88
7,80	15,52
7,90	16,16
8,00	16,80
8,10	17,44
8,20	18,08
8,30	18,72
8,40	19,36
8,50	20,00

2 Номинальные значения аналогового выходного сигнала преобразователей в режиме измерения ЭДС электродной системы (mV) на поддиапазоне от 0 до 250 мВ приведены в таблице A.2.

Таблица А.2

таолица /	4.2	
мВ	Номинальные значения анало	огового выходного сигнала, мА
0	0,0	4,00
10	0,2	4,64
20	0,4	5,28
30	0,6	5,92
40	0,8	6,56
50	1,0	7,20
60	1,2	7,84
70	1,4	8,48
80	1,6	9,12
90	1,8	9,76
100	2,0	10,40
110	2,2	11,04
120	2,4	11,68
130	2,6	12,32
140	2,8	12,96
150	3,0	13,60
160	3,2	14,24
170	3,4	14,88
180	3,6	15,52
190	3,8	16,16
200	4,0	16,80
210	4,2	17,44
220	4,4	18,08
230	4,6	18,72
240	4,8	19,36
250	5,0	20,00

Приложение Б

(справочное)

Номинальные статические характеристики преобразования ЭДС электродных систем

1 Номинальная статическая характеристика преобразования ЭДС электродной системы с нормированными координатами изопотенциальной точки соответствует уравнению

$$E = E_i - (54,196 + 0,1984 \cdot t) \cdot (pH - pX_i)$$
 (5.1)

где

Е - ЭДС электродной системы, мВ;

Еі - координата изопотенциальной точки, мВ;

t - температура раствора, °C;

рН - показатель активности ионов в растворе;

рХі - координата изопотенциальной точки.

2 Пример значения ЭДС, мВ, электродной системы с координатами изопотенциальной точки $E_i = -1976$ мВ, $pX_i = 2,2$ (например, для электрода ЭСТ-0601 с хлорсеребряным электродом сравнения), в зависимости от измеряемой величины рН при различных температурах приведены в таблице Б.1.

Таблица Б.1

рН	Температура раствора, °С										
pri	-20,0	0,0	20,0	25,0	40,0	50,0	60,0	80,0	100,0	150,0	
-2,00	-1765,0	-1748,4	-1731,7	-1727,5	-1715,0	-1706,7	-1698,4	-1681,7	-1665,0	-1623,4	
-1,00	-1815,3	-1802,6	-1789,9	-1786,7	-1777,2	-1770,8	-1764,5	-1751,8	-1739,1	-1707,3	
0,00	-1865,5	-1856,8	-1848,0	-1845,9	-1839,3	-1834,9	-1830,6	-1821,9	-1813,1	-1791,3	
1,00	-1915,7	-1911,0	-1906,2	-1905,0	-1901,4	-1899,1	-1896,7	-1891,9	-1887,2	-1875,3	
2,00	-1966,0	-1965,2	-1964,4	-1964,2	-1963,6	-1963,2	-1962,8	-1962,0	-1961,2	-1959,2	
3,00	-2016,2	-2019,4	-2022,5	-2023,3	-2025,7	-2027,3	-2028,9	-2032,1	-2035,2	-2043,2	
4,00	-2066,4	-2073,6	-2080,7	-2082,5	-2087,8	-2091,4	-2095,0	-2102,1	-2109,3	-2127,1	
5,00	-2116,6	-2127,7	-2138,9	-2141,6	-2150,0	-2155,5	-2161,1	-2172,2	-2183,3	-2211,1	
6,00	-2166,9	-2181,9	-2197,0	-2200,8	-2212,1	-2219,6	-2227,2	-2242,3	-2257,3	-2295,0	
6,25	-2179,4	-2195,5	-2211,6	-2215,6	-2227,6	-2235,7	-2243,7	-2259,8	-2275,8	-2316,0	
6,50	-2192,0	-2209,0	-2226,1	-2230,4	-2243,2	-2251,7	-2260,2	-2277,3	-2294,4	-2337,0	
6,75	-2204,5	-2222,6	-2240,6	-2245,2	-2258,7	-2267,7	-2276,8	-2294,8	-2312,9	-2358,0	
7,00	-2217,1	-2236,1	-2255,2	-2259,9	-2274,2	-2283,8	-2293,3	-2312,3	-2331,4	-2379,0	
7,25	-2229,7	-2249,7	-2269,7	-2274,7	-2289,8	-2299,8	-2309,8	-2329,8	-2349,9	-2400,0	
7,50	-2242,2	-2263,2	-2284,3	-2289,5	-2305,3	-2315,8	-2326,3	-2347,4	-2368,4	-2421,0	
7,75	-2254,8	-2276,8	-2298,8	-2304,3	-2320,8	-2331,8	-2342,9	-2364,9	-2386,9	-2442,0	
8,00	-2267,3	-2290,3	-2313,4	-2319,1	-2336,4	-2347,9	-2359,4	-2382,4	-2405,4	-2462,9	
8,25	-2279,9	-2303,9	-2327,9	-2333,9	-2351,9	-2363,9	-2375,9	-2399,9	-2423,9	-2483,9	
8,50	-2292,4	-2317,4	-2342,4	-2348,7	-2367,4	-2379,9	-2392,4	-2417,4	-2442,4	-2504,9	
8,75	-2305,0	-2331,0	-2357,0	-2363,5	-2383,0	-2396,0	-2409,0	-2434,9	-2460,9	-2525,9	
9,00	-2317,6	-2344,5	-2371,5	-2378,3	-2398,5	-2412,0	-2425,5	-2452,5	-2479,4	-2546,9	
10,00	-2367,8	-2398,7	-2429,7	-2437,4	-2460,6	-2476,1	-2491,6	-2522,5	-2553,5	-2630,9	
11,00	-2418,0	-2452,9	-2487,8	-2496,6	-2522,8	-2540,2	-2557,7	-2592,6	-2627,5	-2714,8	
12,00	-2468,2	-2507,1	-2546,0	-2555,7	-2584,9	-2604,3	-2623,8	-2662,7	-2701,6	-2798,8	
13,00	-2518,5	-2561,3	-2604,2	-2614,9	-2647,0	-2668,5	-2689,9	-2732,7	-2775,6	-2882,7	
14,00	-2568,7	-2615,5	-2662,3	-2674,0	-2709,2	-2732,6	-2756,0	-2802,8	-2849,6	-2966,7	
15,00	-2618,9	-2669,7	-2720,5	-2733,2	-2771,3	-2796,7	-2822,1	-2872,9	-2923,7	-3050,6	
16,00	-2669,1	-2723,9	-2778,7	-2792,4	-2833,4	-2860,8	-2888,2	-2942,9	-2997,7	-3134,6	

3 Пример значения ЭДС, мВ, электродной системы с координатами изопотенциальной точки E_i = -25 мВ, pX_i = 7,0 (например, для электрода ЭС-10602/7 с хлорсеребряным электродом сравнения), в зависимости от измеряемой величины pH при различных температурах приведены в таблице Б.2.

Таблица Б.2

ъЦ		Температура раствора, °C										
рН	-20,0	0,0	20,0	25,0	40,0	50,0	60,0	80,0	100,0	150,0		
-2,00	427,1	462,8	498,5	507,4	534,2	552,0	569,9	605,6	641,3	730,6		
-1,00	376,8	408,6	440,3	448,2	472,1	487,9	503,8	535,5	567,3	646,6		
0,00	326,6	354,4	382,1	389,1	409,9	423,8	437,7	465,5	493,3	562,7		
1,00	276,4	300,2	324,0	329,9	347,8	359,7	371,6	395,4	419,2	478,7		
2,00	226,1	246,0	265,8	270,8	285,7	295,6	305,5	325,3	345,2	394,8		
3,00	175,9	191,8	207,7	211,6	223,5	231,5	239,4	255,3	271,1	310,8		
4,00	125,7	137,6	149,5	152,5	161,4	167,3	173,3	185,2	197,1	226,9		
5,00	75,5	83,4	91,3	93,3	99,3	103,2	107,2	115,1	123,1	142,9		
6,00	25,2	29,2	33,2	34,2	37,1	39,1	41,1	45,1	49,0	59,0		
6,25	12,7	15,6	18,6	19,4	21,6	23,1	24,6	27,6	30,5	38,0		
6,50	0,1	2,1	4,1	4,6	6,1	7,1	8,1	10,0	12,0	17,0		
6,75	-12,4	-11,5	-10,5	-10,2	-9,5	-9,0	-8,5	-7,5	-6,5	-4,0		
7,00	-25,0	-25,0	-25,0	-25,0	-25,0	-25,0	-25,0	-25,0	-25,0	-25,0		
7,25	-37,6	-38,5	-39,5	-39,8	-40,5	-41,0	-41,5	-42,5	-43,5	-46,0		
7,50	-50,1	-52,1	-54,1	-54,6	-56,1	-57,1	-58,1	-60,0	-62,0	-67,0		
7,75	-62,7	-65,6	-68,6	-69,4	-71,6	-73,1	-74,6	-77,6	-80,5	-88,0		
8,00	-75,2	-79,2	-83,2	-84,2	-87,1	-89,1	-91,1	-95,1	-99,0	-109,0		
8,25	-87,8	-92,7	-97,7	-98,9	-102,7	-105,1	-107,6	-112,6	-117,5	-129,9		
8,50	-100,3	-106,3	-112,2	-113,7	-118,2	-121,2	-124,2	-130,1	-136,1	-150,9		
8,75	-112,9	-119,8	-126,8	-128,5	-133,7	-137,2	-140,7	-147,6	-154,6	-171,9		
9,00	-125,5	-133,4	-141,3	-143,3	-149,3	-153,2	-157,2	-165,1	-173,1	-192,9		
10,00	-175,7	-187,6	-199,5	-202,5	-211,4	-217,3	-223,3	-235,2	-247,1	-276,9		
11,00	-225,9	-241,8	-257,7	-261,6	-273,5	-281,5	-289,4	-305,3	-321,1	-360,8		
12,00	-276,1	-296,0	-315,8	-320,8	-335,7	-345,6	-355,5	-375,3	-395,2	-444,8		
13,00	-326,4	-350,2	-374,0	-379,9	-397,8	-409,7	-421,6	-445,4	-469,2	-528,7		
14,00	-376,6	-404,4	-432,1	-439,1	-459,9	-473,8	-487,7	-515,5	-543,3	-612,7		
15,00	-426,8	-458,6	-490,3	-498,2	-522,1	-537,9	-553,8	-585,5	-617,3	-696,6		
16,00	-477,1	-512,8	-548,5	-557,4	-584,2	-602,0	-619,9	-655,6	-691,3	-780,6		

Приложение В

(обязательное)

Основные технические данные термодатчика

Преобразователи рассчитаны на подключение термодатчика, изготовленного с использованием термосопротивления 1000П/1,3850 по ГОСТ Р 8.625-2006.

Номинальное сопротивление термодатчика при температуре (t) в интервале от минус 20 С до плюс 150 °С определяется уравнением

$$R = 1000 \cdot [1 + 3,9083 \cdot 10^{-3} \cdot t - 5,7750 \cdot 10^{-7} \cdot t^{3}]$$
 (B.1)

Номинальные значения сопротивления термодатчика при различных температурах приведены в таблице В.1.

Таблица В.1

Температура, °С	- 20	0	20	40	50	60	80	100	150
Сопротивление термодатчика, Ом	921,6	1000	1077,9	1155,4	1194,0	1232,4	1309,0	1385,1	1573,3

Приложение Г (обязательное)

Схема электрических соединений для градуировки и поверки преобразователей

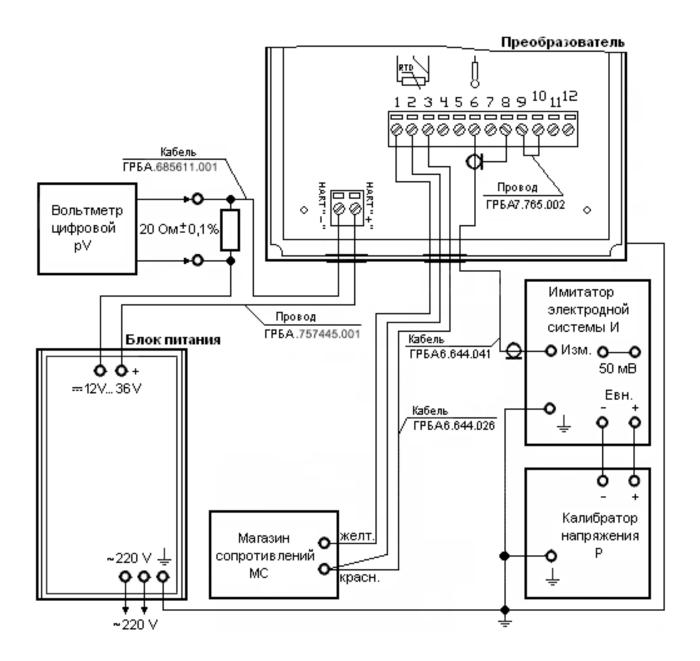


Рисунок Г.1

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

PATTERN APPROVAL CERTIFICATE OF MEASURING INSTRUMENTS

Лействительно до

RU.C.31.083.A

Ne_40713

	" 01 " августа 2015
	ряет, что на основании положительных
результатов испытаний утвержден тип	преобразователей промышленных ИТ-251
р эниколоминан	маства взыеревня
ООО "Измерительная техника", г. Москва ваименование предп	ринтия-высотовителя
	,
который зарегистрирован в Государст	венном реестре средств измерений под
№ 45120-10 и допущен к применению	в Российской Федерации.
Описание типа средства измерений	приведено в приложении к настоящему
свидетельству.	1
Заместитель (Советь)	В.Н.Крутиков
Руководителя	Mary Banky Inkon
Tykonogariesa.	80. 10 2010 r.
	Продлено до
Заместитель	* г.
Руководителя	
	** 20 r.

400713

Лист регистрации изменений

	Номера листов (страниц)			Всего Входящий №					
Изм	изме-	заме-		анну-	листов	№ до-	сопроводи-	Под-	Дата
	ненных	нен-	новых	лиро-	в доку-	кумента	тельного доку-	пись	Дала
		ных		ванных	менте		мента и дата		